
Appeared in the Proceedings of the Second International Workshop on Supporting Knowledge Collaboration in Software
Development (KCSE2006), Ye, Y., Ohira, M., (Eds.), NII, Tokyo, pp.1-8, September, 2006.

1

Supporting Software Development as Collective Creative Knowledge Work

Kumiyo Nakakoji1,2
1RCAST, University of Tokyo 2SRA Key Technology Laboratory Inc.,

kumiyo@kid.rcast.u-tokyo.ac.jp

Abstract

We view software development as a system of
evolution consisting of three elements: (1) artifacts, (2)
individual developers, and (3) a community of
developers. An individual’s determination of what
artifacts to contribute and how to do so, with whom to
communicate by asking or answering, and which role
to play within the community affects the quality of
software to be developed, leading to a fundamental
tenet: How developers relate to each other does matter.
Software development should therefore be viewed as a
system of evolution driven through metabolic processes
of how artifacts, developers, and the community grow.
This paper describes the framework of viewing
software design as a collective creative knowledge
work, and outlines possible research areas to pursue.

1. Introduction

Software development is knowledge-intensive work,
involving both planning and presentation activities [34].
Developers need to locate source code that is
potentially relevant to the task at hand, understand how
to modify the source code while identifying why it is
the way it is, and/or write new code where necessary
[20]. Although requirement specifications, design
documents, comments, and design rationale are
provided to help developers in this process, they are
often not enough. Developers need to be familiar with
the programing language for the code, component
libraries used and potentially usable for implementing
the code, design methods applied to develop the code,
programming tools and environments available to
develop the code, and application domains of the code.

Experience is certainly helpful, but it does not
necessarily work in such a way that longer experience
engaging in a development project provides more
knowledge about the entire project. Software
development needs knowledge in a variety of fields,
which requires constant updates.

There are no absolute experts in software
development. Application domains are subject to rapid
change. Component libraries are continually updated.
New features and functionalities continue to be
introduced in programming tools and environments.

Moreover, a culture exists in software development
that prevents developers from sharing knowledge over
the entire source code. As LaToza and colleagues
observed, “implicit knowledge retention is made
possible by a strong, yet often implicit, sense of code
ownership, the practice of a developer or a team being
responsible for fixing bugs and writing new features in
a well defined section of code” [20]. Thus, the
“symmetry of ignorance” within a development team is
neither a problem nor an accident; it is a matter of fact
in software development [8].

Thus, software development is a fundamentally
social activity [30]. The activity is carried out by a
group of developers, forming a community and
engaging in collective creative knowledge work [26]. It
is a social activity mediated through artifacts, which
are primarily source codes and documents. Even a
single-person project has such a community aspect
because the project is likely to use component libraries
and existing modules developed by a number of other
developers over a long period of time.

2. Social Aspects of Software Development

Social aspects of software development have been
studied mostly in the context of how developers and
end-users work together in designing a computer
technology. Ethnographers and social scientists have
explored ways to help these stakeholders develop a
shared understanding and shared context during the
process [41]. Another social aspect that has been
studied is the organizational context of a software
development project [30].

This paper, in contrast, focuses on the peer-to-peer
level of knowledge collaboration of software
developers: How developers use other developers as
knowledge resources and what social issues are
involved during the process, such as the cost of
interruption and the motivation for contribution. The
kinds of these social issues involve artifacts and other
developers.

Although sharing knowledge and information
within a community of developers is indispensable, the
primary means for developers to obtain knowledge is

2

not through communicating with their peers, but
through artifacts.

In understanding source code, developers ask
questions such as where to focus the initial point, how
to explore the related parts, and how to understand
concepts involving these related parts as well as the
relationships among these concepts [35]. During the
process, software developers “invest great effort
recovering implicit knowledge by exploring code” [20].

This exploration process often does not succeed,
however, primarily due to the lack of detailed
knowledge articulated in the source code. If this is the
case, software developers start depending on
distributed knowledge resources, namely, the other
developers in the community.

Based on two surveys and eleven interviews with
software developers at Microsoft Corporation, LaToza
et al. [20] have observed that “Developers go to great
lengths to create and maintain rich mental models of
code that are rarely permanently recorded, and when
trying to understand a piece of code, developers turn
first to the code itself but when that fails, to their social
network.” This would work because source code is
often owned by a certain developer or a team of a small
number of developers who have detailed, almost
complete knowledge of the particular source code.

This type of knowledge sharing and collaboration
involves two kinds of social issues. First, asking the
owner of the source code, either face-to-face or via
email, would cost some additional work for the person
who is being asked for help, and may interrupt his/her
primary work [20]. An interruption is regarded as an
unexpected encounter initiated by another person that
disturbs “the flow and continuity of an individual’s
work and brings that work to a temporary halt to the
one who is interrupted” [37]. Different interruption
moments have different impacts on users’ emotional
states and positive social attributions [1].

Second, even if the one comes to understand the
source code through such help from his/her peers, this
understanding will likely neither be articulated nor
recorded. This is due not only to the overhead of
writing it down, but also the feeling that the newly
found information “is not authoritative enough to add
permanently to the code” or that adding one’s own
name to the comments “would inappropriately make
them experts” [20]. This lack of documentation thereby
often results in “institutional memory loss” [20].

Supporting software developers thus need to
support collaboration with their peers, which would
need more than simply finding the “right” person for
completing the task. Social factors, such as motivation,
trust, self-confidence, and social recognition need to be
considered.

3. Three Elements of Software
Development: Artifacts, Developers,
and a Community

The goal of supporting software development as
collective creative knowledge work involves
supporting software developers in developing software.
This is different from the goal of social matching
systems, which is to introduce people to people [38].

This position paper views software development as
a system of evolution consisting of the three elements:
(1) artifacts, (2) individual developers, and (3) a
community of developers (Figure 1). A group of
developers engaging in software development can be
viewed as forming a knowledge community, defined as
a group of people who collaborate with one another for
the construction of artifacts of lasting value [4]. In a
knowledge community, people are bonded through the
construction of artifacts.

Figure 1: Software Development as a System of
Evolution Consisting of the Three Elements

The community element is essential when viewing

software development as collective creative knowledge
work. The roles of individual developers, both
formally assigned ones and informally perceived ones,
change over time during a project. The social
relationships among the developers grow through their
engagement in the project, affecting how they
collaborate, communicate, and coordinate with one
another, which results in different ways of sharing
knowledge.

Because knowledge sharing is indispensable in
software development, the quality of the resulting
software depends not only on the skills and knowledge
of individual developers, but also on the roles and
social relationships among the developers. In other
words, the quality of the software to be developed is
determined not only by the sum of each developer’s
knowledge, but also how the developers relate to each
other.

None of the three elements is constant during the
software development. Artifacts change over time
throughout the development. Individual developers—
or, more precisely, what individual developers know—
grow by the experience gained by engaging in the
development and learning about the artifacts. A
community of developers changes when new

3

developers join or developers leave the development
project. Their officially assigned roles and informally
perceived roles change over time, and the social
relationships among them also change.

Existing studies on supporting software
development have primarily focused on the evolution
of artifacts. More recent work has started to look at
how individuals change through learning. In contrast,
not much has been studied on the aspect of the
evolutionary community in the context of software
development processes [27].

The rest of this position paper focuses on how the
community element evolves and how technologies
ought to support such processes.

4. The Metabolic Process of a System of
Evolution

A software system needs to evolve to improve its
quality in terms of efficiency and robustness, as well as
to cope with the external changes in the environment in
which the software is used. This type of evolution,
recently referred as incremental change [32], should
not be viewed as simply adding new objects or
mending broken ones; rather, it should be viewed as a
metabolic process.

Artifacts go through such a metabolic process by
adding, modifying, and refactoring the source codes.
New parts are added and old parts are rewritten; some
parts may be replaced with other parts.

Individuals’ knowledge evolves through learning
[22]. People learn by reading source code and such
information sources as documents. They learn by
asking peers questions. They also learn by solving new
problems and experiencing unfamiliar situations. Their
old knowledge is replaced with new knowledge and is
restructured during the learning process.

Figure 2: Three Aspects of the Community's

Metabolic Process

A community’s metabolic process grows through

individual activities. This paper views the metabolic
process of a community from the following three
aspects (Figure 2): (1) the relationship of an individual
with artifacts; (2) the relationship of an individual with
other developers; and (3) the relationship of an
individual to the community as a whole.

(1) The relationship of an individual with artifacts.
How one relates with artifacts is concerned with what

knowledge, expertise, and experience the individual
has had on what artifacts. This information is useful in
identifying a set of people who are likely to have
expertise with a certain artifact.

An early social navigation system, Expertise
Browser [24], provides this type of information.
Expertise Browser uses data from change management
systems to locate people with desired expertise by
using a quantification of experience. The system then
presents evidence to validate this quantification as a
measure of expertise.

A more recent tool, LifeSource [14], provides two
visualizations of CVS code repositories.
CodeConnections provides file-centric, temporary-
animated visualizations, in which color-coded authors
(i.e., developers) are indicated in terms of the file-
structures. CodeSaw provides author-centric
visualizations of a weighted collection of email and
code contributions of each developer, in which the
view can overlay multiple developers’ contributions to
make comparisons.

(2) The relationship of an individual with other
developers. How one relates with other individuals
impacts social relationships among developers. This
information helps a developer determine whom to
actually ask for help about a certain artifact as well as
decide whether and how to actually respond to a
question being posed by an asker (Figure 3).

Figure 3: Asker-Helper Relationship

To help people decide whom to ask, social
awareness tools [36] help community members
become aware of what is going on within a community,
and primarily help askers decide who and when to ask
a question by looking at how intensively potential
helpers are currently engaging in their own tasks.

Compared to the number of approaches that aim at
supporting askers, very few studies exist that focus on
supporting helpers (Figure 3). Answering a question
costs the helper (i.e., the answerer) additional work and
interrupts the helper’s current task. Resuming the
original task after such an interruption has been found
to be quite costly [19]. Why would one, then, help
another if answering is such a costly task?

The feeling of expectation and obligation plays an
important role during the helper’s process of deciding
whether and when to help. Having information about
one’s social relationships with the other individual
developers helps him/her develop a feeling of
obligation and expectation with each of them [28]

4

because people tend to favor reciprocal acts. If Person
X provides a service to Person Y, X feels an
expectation for Y, and Y feels obliged to return the
service to X in the near future. Thus, one may feel
obliged to answer a question being asked by a peer
developer who had kindly helped him/her the week
before. Obligations “represent a commitment of duty
to undertake some activity in the future” [25].
Expectations are what one has of others based on one’s
trust in them and vice versa. Researchers see
obligations and expectations as complementary
features [3], incurred during prior interactions, and
creating value for the community in the future [31].

A few systems have been developed to explore
individual relationships to help one decide how to
engage in the communication. For instance, Soylent [9]
provides temporal and social structures of an online
activity by visualizing email messages and their traffic.
The system provides an ego-centric view to identify
with whom one has been communicating at what time,
helping an individual develop a feeling of obligation
and expectation.

(3) The relationship of an individual to the community
as a whole. How one relates to the community is
concerned with that individual’s role within the
community, or whether he/she belongs to a peripheral
part, a core part, or an intermediate layer. This aspect
helps a developer decide how much he/she contributes
to the community by gaining trust and social reputation
within the community. One’s role evolves within a
community through legitimate peripheral participation
[40]. By looking at how and what a developer’s peers
who are closer to the core of the community do within
the community, the developer gradually acquires skills
through learning, and develops his/her identity within
the community.

One-to-one communication and collaboration also
contribute to the development of social reputation.
Obligations and expectations also play a role in this
context. When other peers in the community look at X
giving service to Y, X might gain not only expectation
from Y but also social reward from the community in
the form of a good reputation and trust. This might
then lead to shifting the role of X within the
community from the periphery closer to the core.

Tools have been developed to use Usenet
Newsgroup communities to identify this type of
relationship of an individual with the community.
Tools described by Fischer and colleagues [10][12]
provide a second-degree ego-centric network for each
author together with out-degree histograms of each
community, identification of types of users (e.g.,
answer-only group) and characterization of each
community. Newsgroup Crowds and AuthorLines [39]

identify authors and types of authors in terms of how
they are engaged in the community. The tools visually
represent for each user the number of postings per
thread and active days over a month. They highlight
recently posted messages and encode the number of
posts to the entire set (Usenet Newsgroup as a whole)
as the size, allowing people to understand the “role” of
a user as a whole and for a particular newsgroup.

5. Technical Support for Metabolic
Processes of the Community Evolution

To support the evolutionary metabolic process of a
community, we need technologies for individuals to
become aware of the current state as well as its history
from the three aspects; that is, to help them determine
what artifacts to contribute and how to do so, with
whom to communicate by asking or answering, and
which role to play within the community.

The approach here is to use interaction histories as a
source for such decision making by allowing
developers to deal with social factors, such as
motivation, trust, self-confidence, and social
recognition.

A number of social navigation systems have been
studied to support community activities in a variety of
domains [17]. Many of them visualize the history of
community members’ activities to analyze the
community as a whole, and/or to help a user decide
which community to join or to find people with whom
to communicate. Many systems, however, suffer from
not having a clear goal of who is to use the
visualizations for what purposes. Having clear goals
would determine what types of data to show in what
ways, for instance, whether to use my-own-data or
collective-social-data as a collective snapshot or as
temporal transitions [11].

The goal here is to use the interaction history data to
help software developers determine how to engage in
the community by interacting with which artifacts and
with whom. How developers engage in the community
then would shape the metabolic processes of the
system of evolution from the community aspect. In
considering this, this section argues for the following
claims.

(1) Such data should describe the state of the
community, as well as the trends and temporal changes
over a long period of time.

The evolution of an organism depends not only on
the type of perturbation, but also on the current
structure of the organism. The current structure is
determined through its historical development [22].
Having temporal views that allow us to understand
how the community has evolved is quintessential.

5

For instance, when two developers work an equal
amount of time on a certain module, if one has worked
over a period of two years and the other has been
working during the last two months, the latter
developer is likely to know better about the current
version of the module. This kind of information is
important when identifying whom to ask about the
module [24].

(2) Such data should support not only views for the
summaries and overviews of the interaction history
data, but support ego-centric views, those based on
individuals’ perspectives.

Because it is situated within a social context,
knowing the current state and history of one’s
relationships with artifacts, other developers, and the
community is not as straightforward as it seems. Such
relationships are by no means objectively countable or
measurable. One could only assume, or perceive, what
the relationships currently are or have been. One could
also assume, thereby, how the relationships would look
to another developer.

For instance, you may think you have X amount of
expertise on a particular part of the source code. You
also may think you are a little bit overestimated by one
of your colleagues, Bob, and have a feeling that Bob
thinks that you have Y amount of expertise on the part.
You think that Bob has Z amount of expertise on the
part, but again, Bob might think a little differently.

Thus, technologies that support a community’s
metabolic process should help an individual to feel or
assume the current state as well as the history of
his/her relationships with artifacts, the other developers,
and the community. They need to aim at providing data
not only from an objective standpoint, but also from an
individual, ego-centric viewpoint.

(3) Such data can be collected within the scope of a
single community activity as well as from that of
external activities.

People’s social relationships might be determined
not only through activities within the community but
also through those external to the community or within
another community [43]. A software developer might
be a member of another project, or belong to multiple
communities.

A developer might be able to better understand the
skill level of his/her peer by knowing the role of the
peer within another development community.

(4) Some parts of such data should only be partially
disclosed to the community members, creating
asymmetric information disclosure.

A software developer may not want to disclose all
the historical information of his/her activities within

the community. A developer should be able to
explicitly specify some of the properties of his/her
relationships with artifacts, developers, and the
community (e.g, the skill level with a certain module)
because it is not always possible to adequately assume
how such relationships exist or have evolved.

The Saori system [15] provides users with
awareness of and control over the information
dissemination process within social networks. Saori
allows users to specify types of information to be
shared and a sharing policy at the level of mostly
public and mostly private, not at the level of
individuals. The STeP_IN (Socio-Technical Platform
for in situ Networking) system [29] allows users to
explicitly specify with whom developers want to
communicate on what topics. This information is
invisible to the other developers.

6. Social Factors

This section briefly examines social factors that
affect software development driven by a knowledge
community: motivation and interruption.

6.1 Motivation

Studies have recently reported on how to motivate
people to make contributions of higher quality to
community-maintained artifacts of lasting value
(CALVs). In the domain of movie recommendations,
Ludford et al. [21] reports that telling people how they
are special with respect to the group and its purpose
increases member contributions and levels of
satisfaction. Cosley et al. [4] argue that what they call
“intelligent task routing,” which is matching people
with work, can be helpful to increase people’s
contribution, and that such intelligent task routing
should consider not only the community’s needs but
also a person's knowledge and ability. Rashid et al.
[33] have found that giving feedback about the value of
a participant’s contribution in terms of a small group
with which the user has affinity is most effective in
motivating people to contribute.

Although the domain of these projects is movie
recommendation and not software development, these
findings seem to be equally applicable to software
development as a collective creative knowledge
community activity. This domain, however, has a
fundamentally different nature from that of software
development. In making a community repository of
movie recommendations, the members of the
community have no clear purpose of finishing it—they
have no explicit incentives for doing so. In contrast,
developers of each software development community
share the clear goal of finishing a project, and they may
be more motivated to help one another.

6

In either case, we need to conduct empirical studies
to draw any significant conclusions on this matter, and
further studies are necessary on how to motivate
developers to contribute high-quality artifacts and
sustain the community as a system of evolution.

6.2 Interruption

Although interruptions between humans have
mainly been studied in face-to-face communication
settings, many findings seem to be applicable also to
communications through email. In a face-to-face
communication, an asker and a helper first need to go
through a negotiate process, making an agreement on
when to interrupt the helper. People use a variety of
social cues to decide when to start the negotiation
process and make an agreement [42].

In using email for communication, it is much easier
for a helper to ignore email messages that ask for help.
It is also more difficult for an asker to get timely help
because the asker cannot determine when a helper
would reply to a message. Studies by LaToza [20]
found that this dilemma makes developers prefer face-
to-face communications rather than using email, which
causes serious problems of interruption, especially
employing agile development styles.

Wiberg and Whittaker [42] report that in their face-
to-face interruption studies, users preferred to take
interruptions as soon as possible. People preferred to
take interruptions now, incurring the cost of disrupting
their current activity in order to avoid the future
overhead of having to schedule and remember later
commitments to talk. The authors also argue that users
felt a social obligation to return calls and a need for
being polite rather than delegating them, even though it
requires more effort to do this.

These phenomena seem to also hold true for email
communications. Although not as socially critical as in
face-to-face communication, putting off replying to
information-seeking email messages often makes one
feel guilty. One may feel that he/she wants to reply to a
message as soon as possible so that he/she would not
need to worry about forgetting to reply.

To address this issue, the STeP_IN system [29][44]
uses a mechanism to automatically set up an
anonymously addressed mailing list for an asker’s
request. The tool produces such a mailing list by taking
into an account who is asking what question (i.e., the
topic) and identifying several sets of developers in a
community who have expertise in the topic and have
good social relationships with the asker. The
mechanism allows receivers of the message to remain
anonymous, so they don’t feel bad by not replying to
the message. When one of the recipients replies to the
message, the identity of the helper is revealed to the
asker and the regular ways of social interaction follow,

helping them develop feelings of expectation and
obligation. The approach is unique in that the cost of
interruption is treated in a collective manner. This
aspect needs to be studied further in order to better
support software development as collective creative
knowledge work.

The field of human-computer interaction has long
been studying how to model interruption between
humans and computer agents [18][5]. Some parts of
their models and findings should be taken into account
to achieve more effective, less disturbing
communication channels in support of software
development within a social setting. For instance, one
possible approach is to model the timing of when a
potential helper should receive an email message by
deliberately delaying the message delivery.

7. Related Work

The previous sections list existing tools and studies
that address specific aspects of the approach. This
section addresses three projects that have similar
research goals with the present study in the domain of
supporting software development as a social activity.

The Augur system [6][13] can be viewed as an
example technique to look at software development as
a system of evolution. The Augur system
simultaneously visualizes the structure of a software
system (i.e., artifacts) and the structure of the
development process carried out by developers (i.e.,
developers and the community). Augur visualizes the
result of call graph analysis and networks of
contributors to a project, relating those who worked
together on a single module. By looking at how
developers worked together on what parts of a software
system, a user of Augur could tell how relationships
between artifacts (software system module structures)
and developers have changed over time, including
phenomena such as types of projects, the different roles
different developers take, how such roles shift between
core and periphery, how authorship changes, and what
patterns of stability and changes are observable. Augur
currently supports ways to view the structural changes
from an objective standpoint, providing ego-centric
individual viewpoints, for instance, from a particular
developer’s point of view, similar to the ones provided
by Soylent [9].

Another example is Hybrid Networks [23], which
integrates links from multiple development data
sources. The tool uses the Probabilistic Latent
Semantic Indexing clustering technique to associate
and cluster data from email discussions, authors, and
CVS source code tree branches. The result is integrated
and displayed in a single visualized view. The tool

7

currently does not support temporal views or ego-
centric views.

As mentioned previously, Storey et al. [36] argues
for the importance of supporting awareness in software
development by visualizing artifact and activity data,
and reports the results of comparing then-existing 13
tools that support such awareness. They have
developed a survey framework that consists of
intention of the visualization, information that is
visualized, presentation used in the visualization,
interaction provided for the visualization, and
effectiveness of the visualization. Some parts of the
framework, such as whether tools address temporal and
historical changes over time and what types of artifacts
tools support are important for our purpose. However,
the framework does not focus on the relationships
among artifacts, developers, and the community, nor
how they change over time.

8. Discussion

Human aspects of software development
historically have not been highly focused [30][7]
except in few approaches, such as empirical software
engineering [2] and considerations of cognitive aspects
of software engineering [16]. Recent trends in software
engineering cannot be taken into full account without
seriously taking the social aspect of knowledge-
intensive software development as a central theme.
Using open source software, adapting agile methods
through incremental change, and engaging in global
software development are all equally aware of the
importance of the collective, creative aspect. This
would demand us to develop an inter-disciplinary
research agenda to cope with the human aspect issue.
Researchers and practitioners in this field need to
engage in socio-technical collaboration for themselves.

Acknowledgments
This research is partially supported by the Ministry of
Education, Science, Sports and Culture (MEXT)
Grant-in-Aid for Exploratory Research, 17650038,
2005.

Reference
[1] Adamczyk, P.D., Bailey, B.P., If Not Now, When?: The
Effects of Interruption at Different Moments within Task
Execution, Proc. CHI04, ACM Press, pp. 271-278, 2004.

[2] Basili, V., The Role of Experiments in Software
Engineering: Past, Current, and Future, Proc. ICSE'96, pp.
442-449, ACM, 1996.

[3] Coleman, J.S., Social Capital in the Creation of Human
Capital. American Journal of Sociology, 94: pp. S95-S120,
1998.

[4] Cosley, D., Frankowski, D., Terveen, L., Riedl, J., Using
Intelligent Task Routing and Contribution Review to Help
Communities Build Artifacts of Lasting Value, Proc. CHI06,
ACM Press, pp. 1037-1046, 2006.

[5] Czerwinski, M., Horvitz, E., Wilhite, S., A Diary Study
of Task Switching and Interruptions, Proc. CHI’04, ACM
Press, pp. 175-182, 2004.

[6] de Souza, C., Froehlich, J., Dourish, P., Seeking the
Source: Software Source Code as a Social and Technical
Artifact, Proc. GROUP05, ACM Press, New York, pp. 197-
206, 2005.

[7] Dittrich, Y., Doing Empirical Research on Software
Development: Finding a Path between Understanding,
Intervention, and Method Development, in Social Thinking -
Software Practice, Dittrich, Y., Floyd, C., Klischewski, R.
(Eds.), pp. 243-262, MIT Press, Cambridge, MA, 2002.

[8] Fischer, G., Symmetry of Ignorance, Social Creativity,
and Meta-Design, Knowledge-Based Systems Journal,
Elsevier Science B.V., Oxford, UK, Vol. 13, No. 7-8, pp.
527-537, 2000.

[9] Fisher, D., Dourish, P., Social and temporal structures in
everyday collaboration, Proc. CHI04, pp. 551-558, Vienna,
Austria, 2004.

[10] Fisher, D., Understanding Communication Using Social
Networks. IEEE Internet Computing, September/October,
2005.

[11] Fisher, D., Ask Not for Whom the Visualization Is
Rendered; It is Rendered for Thee. Workshop paper,
presented at the Social Visualization Workshop, CHI 2006.

[12] Fisher, D., Smith, M., Welser, H., You Are Who You
Talk To, Proc. HICSS, January 2006.

[13] Froehlich, J., Dourish, P., Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams. ICSE’04. IEEE Computer Society,
387-396, 2004.

[14] Gilbert, E., Karahalios, K., LifeSource: Two CVS
visualizations. CHI ‘06 Extended Abstracts on Human
Factors in Computing Systems, ACM Press, pp. 791-796,
2006.

[15] Goecks, J., Mynatt, E. D., Leveraging Social Networks
for Information Sharing. Proc. CSCW ‘04. ACM Press, pp.
328-331, 2004.

[16] Herbsleb, J. D., Beyond Computer Science. Proc. ICSE
‘05. ACM Press, pp. 23-27, 2005.

[17] Hook, K., Benyon, D., Munro, A.J. (Eds.), Designing
Information Spaces: The Social Navigation Approach,
Springer, 2003.

[18] Horvitz, E., Apacible, J., Learning and Reasoning about
Interruption. Proc. ICMI ‘03. ACM Press, pp. 20-27, 2003.

8

[19] Iqbal, S. T., Bailey, B. P., Leveraging Characteristics of
Task Structure to Predict the Cost of Interruption, CHI’06,
ACM Press, pp. 741-750, 2006.

[20] LaToza, T.D., Venolia, G., DeLine, R., Maintaining
Mental Models: A Study of Developer Work Habits,
Proceedings of the ICSE ‘06. ACM Press, pp. 492-501, 2006.

[21] Ludford, P.J., Cosley, D., Frankowski, D., Terveen, L.,
Think Different: Increasing Online Community Participation
Using Uniqueness and Group Dissimilarity, Proc. CHI’04,
ACM Press, pp. 631-638, 2004.

[22] Maturana, H.R., Varela, F.J., The Tree of Knowledge:
The Biological Roots of Human Understanding, Shambhala
Publications,Inc., Boston, MA, 1998.

[23] Medynskiy, Y., Ducheneaut, N., Farahat, A., Using
Hybrid Networks for the Analysis of Online Software
Development Communities, Proc. CHI’06, ACM Press, pp.
513-516, 2006.

[24] Mockus, A., Herbsleb, J. D., Expertise Browser: A
Quantitative Approach to Identifying Expertise, Proceedings
ICSE’02, ACM Press, pp. 503-512, 2002.

[25] Nahapiet, J., Ghoshal, S., Social Capital, Intellectual
Capital, and the Organizational Advantage. Academy of
Management Review, 23, pp. 242-266, 1998.

[26] Nakakoji, K., Ohira, M., Yamamoto, Y., Computational
Support for Collective Creativity, Knowledge-Based Systems
Journal, Elsevier Science, Vol. 13, No. 7-8, pp. 451-458,
December, 2000.

[27] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K.,
Ye, Y., Evolution Patterns of Open-Source Software Systems
and Communities, Proc. IWPSE2002, ACM Press, Orlando,
FL, pp. 76-85, May, 2002.

[28] Nakakoji, K., Humane Requirements for Enabling and
Nurturing Collective Creativity, Proc. HCII05, Las Vegas,
NV, CD-ROM, July 22-27, 2005.

[29] Nishinaka, Y., Asada, M., Yamamoto, Y., Ye, Y., Please
STeP_IN: A Socio-Technical Platform for in situ Networking,
Proc. APSEC’05, Taipei, pp. 813-820, December, 2005.

[30] Noerbjerg, J., Kraft, P., Software Practice Is Social
Practice, in Social Thinking, Software Practice, Dittrich, Y.,
Floyd, C., Klischewski, R. (Eds.), pp. 205-222, MIT Press,
Cambridge, MA, 2002.

[31] Resnick, P., Beyond Bowling Together: Sociotechnical
Capital. in HCI in the New Millennium, Carroll, J. M. (Ed.),
pp. 247-272, 2002.

[32] Rajlich, V., Changing the Paradigm of Software
Engineering, Communications of ACM, Vol. 49, No. 8, pp.
67-70, August, 2006.

[33] Rashid, A.M., Ling, K., Tassone, R.D., Resnick, P.,
Kraut, R., Riedl, J., Motivating Participation by Displaying

the Value of Contribution, Proc. CHI’06, ACM Press, New
York, pp. 955-958, 2006.

[34] Robillard, P.N., The Role of Knowledge in Software
Development. Comm. ACM Vol. 42, No. 1, pp. 87-92, 1999.

[35] Sillito, J., Murphy, G., De Volder, K., Questions
Programmers Ask During Software Evolution Tasks, Proc.
Symposium on Foundations of Software Engineering,
November 2006 (to appear).

[36] Storey, M-A. D., Cubranic, D., German, D.M., On the
Use of Visualization to Support Awareness of Human
Activities in Software Development: A Survey and a
Framework, Proc. SoftVis’05, ACM Press, pp. 193-202,
2005.

[37] Szoestek, A.M., Markopoulos, P., Factors Defining
Face-To-Face Interruptions in the Office Environment,
CHI2006, Work-in-Progress, pp. 1379-1384, 2006.

[38] Terveen, L., McDonald, D. W., Social Matching: A
Framework and Research Agenda, ACM Trans. of Comput.-
Hum. Interact., Vol. 12, No. 3, pp. 401-434, 2005.

[39] Viegas, F., Smith, M., Newsgroup Crowds and
Authorlines: Visualizing the Activity of Individuals in
Conversational Cybersapces, HICSS-37, Hawaii, January
2004.

[40] Wenger, E., Communities of Practice – Learning,
Meaning, and Identity. Cambridge, UK: Cambridge
University Press, 1998.

[41] Westrup, C., On Retrieving Skilled Practices: The
Contribution of Ethnography to Software Development, in
Social Thinking, Software Practice, Dittrich, Y., Floyd, C.,
Klischewski, R. (Eds.), pp. 95-110, MIT Press, Cambridge,
MA, 2002.

[42] Wiberg, M., Whittaker, S., Managing Availability:
Supporting Lightweight Negotiations to Handle Interruptions.
ACM Trans. of Comput.-Hum. Interact., Vol. 12, No. 4, pp.
356-387, 2005.

[43] Ye, Y., Yamamoto, Y., Dynamic Communities in
Support of Situated Knowledge Collaboration, Proceedings
HCII05, Las Vegas, NV, CD-ROM, July 22-27, 2005a.

[44] Ye, Y., Dimensions and Forms of Knowledge
Collaboration in Software Development, Proceedings
APSEC, Taipei, pp. 805-812, December, 2005b.

