
Presented at the CHASE (Human and Cooperative Aspects of Software Engineering) Workshop at ICSE2008, Leipzig, Germany, May,
2008.

The Economy of Collective Attention for Situated
Knowledge Collaboration in Software Development

Yunwen Ye1,2
1Dept. of Computer Science

University of Colorado
Boulder, CO80309, USA
yunwen@colorado.edu

Kumiyo Nakakoji2,3
2SRA Key Technology Lab

3-12 Yotsuya, Shinjuku
Tokyo, 160-0004, Japan

 kumiyo@kid.rcast.u-tokyo.ac.jp

Yasuhiro Yamamoto3
3KID Laboratory, RCAST

U. of Tokyo, 4-6-1 Komaba, Meguro,
Tokyo, 153, Japan

yxy@kid.rcast.u-tokyo.ac.jp

ABSTRACT
Because the knowledge required for the construction of a complex
software system is often widely distributed among its members,
programmers routinely engage in collaboration with each other to
acquire knowledge resided in the heads of their peers to
accomplish their own programming tasks. We call this kind of
collaboration situated knowledge collaboration. Situated
knowledge collaboration comes with costs and the costs vary
depending on the communication mechanism used. To better
understand the cost-benefit structure of different communication
mechanisms in support of situated knowledge collaboration, we
propose the conceptual framework of collective attention
economy. The analytic power of the conceptual framework is
illustrated in the comparison of two communication mechanisms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering. H.5.3 [Information
Interfaces and Presentation]: Group and Organization Interfaces
- computer-supported cooperative work, theory and models.

General Terms
Design, Theory.

Keywords
Collective attention economy, situated knowledge collaboration

1. INTRODUCTION
Programming is essentially a knowledge construction process
during which programmers apply a wide variety of knowledge
from the computer and application domains to construct new
knowledge artifacts—software. As software systems become
increasingly complex and large, and the development teams
become increasingly distributed, communication and
collaboration become the more important factors that determine
the productivity and quality of software development. The needs
for communication and collaboration arise from two major areas.
The first one is the consequences of division of labor: a complex
software system needs to be built by many hands. The second one
is the consequences of distribution of knowledge: the required
knowledge to build a software system becomes so vast that no
single programmer can have all the knowledge, and software
development therefore requires the integration of knowledge
distributed in many heads.

Despite decades of software engineering research that tries to
decompose software development into independent and
parallelizable tasks, programming tasks are still helplessly
interdependent in a complex way [4]. The decomposition of tasks
also deepens the distribution of knowledge: each programmer
only has partial knowledge of the system and of the process. Due
to the inter-dependency, each programmer often needs to seek
knowledge from peers to carry out his/her work efficiently and
effectively. We call this kind of collaboration situated knowledge
collaboration in which a programmer asks others for expertise
necessary to solve his/her immediate programming task at hand.

Situated knowledge collaboration comes with costs. The costs
could even outweigh its benefits and lower the group productivity
[12]. Such costs vary depending on what communication
mechanisms are used. To understand the cost better, we introduce
the notion of collective attention to represent the total cost of
attention of all parties involved in an act of situated knowledge
collaboration, and propose a conceptual framework called
economy of collective attention as an instrument to analyze the
cost-benefit structures of various communication mechanisms that
are used to support situated knowledge collaboration in software
development.

2. SITUATED KNOWLEDGE
COLLABORATION IN PROGRAMMING
Many types of needs for communication and collaboration exist in
software development, such as the needs of informing
programmers of the status of the project, the needs of
brainstorming for design ideas, and the needs for consensus
building. Situated knowledge collaboration is different from other
needs for communication and collaboration, and has the following
distinctive characteristics:
• It arises on an as-needed rather than scheduled basis, and arises

from the working context of an individual programmer.
• It is not for the general purpose of learning or creating

awareness in which information is not immediately coupled
with the task at hand. Rather it serves for solving an immediate
problem of the programmer, and requires quick resolution.

• It occurs as sequences of highly focused interactions in a short
period of time, with a relatively small group of participants.

• It is mainly for the benefit of the expertise-seeking programmer,
but has direct impact on the productivity of the whole group
because all programmers involved in situated knowledge
collaboration also belong to the same group.

Presented at the CHASE (Human and Cooperative Aspects of Software Engineering) Workshop at ICSE2008, Leipzig, Germany, May,
2008.

• It recurs frequently and a programmer often assumes the role
of expertise-seeker or expertise-provider at different times.

The above settings of situated knowledge collaboration entail the
following three constraining factors.

(1) The collective attention has a limited capacity due to the
fixed size of the project group. This is different from
volunteer-based community projects where the number of
“eyeballs” can be increased through strategies of turning
passive users into active contributors.

(2) Situated knowledge collaboration is not a one-time affair; it
has to be sustainable because its continuous enactment is
required throughout the lifecycle of the project consisted of
relatively stable members. Engagement in one collaborative
act should not result in one’s reluctance to participate in
further collaboration acts down the road.

(3) The costs and benefits of situated knowledge collaboration
have to be considered together with the group productivity
that is of essential importance. If a programmer is unable to
obtain such information in the head of peer programs timely,
he or she cannot carry out his or her programming effectively
or efficiently, and thus lowers his or her own productivity,
which in turn lowers the productivity of the project team. On
the other hand, if a programmer is frequently interrupted by
being asked to provide help, then his/her productivity is
significantly reduced, resulting in lower group productivity.

3. COLLECTIVE ATTENTION ECONOMY
Attention is an intrinsically scarce resource because everyone has
only a certain stock of supply. We are entering a world where our
lives are guided more by the laws of the economics of attention
because attention is quickly becoming the scarcest resource in our
society [7]. Attention economy is concerned with the patterns of
allocating attention for the best possible benefits. Allocating
attention to a person is to turn one’s mind to align with others’,
and allocating attention to a thing is to act or reflect upon it.
Allocating collective attention in situated knowledge collaboration
is to align helpers’ minds with those of askers. From the
perspective of economy of collective attention, however, the
allocation of collective attention should not only match the
interests of the asker, but also match the interests of the helpers
and, more importantly, the productivity of the group.

3.1 The Cost of Collective Attention
In an act of knowledge collaboration, both the asker and potential
helpers consume attention in communication with each other.

An asker needs to find where the needed expertise is located, and
who potentially has the expertise. Previous research has shown
that such transactive knowledge, defined as an awareness of who
knows what, takes extensive time to develop, and its utilization
consumes intensive attention [11]. We denote the attention cost
for finding the location of expertise as CFind.
The question needs to be formulated and articulated, and we
denote the attention cost for this act as CAsk. The way that the
question is presented affects the response it will receive [1]. The
asker also needs to make a decision based on social cues whether
the helper could be interrupted [8], and to determine opportune
times to interrupt [3].

When potential helpers are presented with a question, all of them
are interrupted and distracted from their current work. The cost of

attention (denoted as CInterrupt) includes not only the attention
spent on attending to the interrupting event but the disruption of
flow and the accompanied work resumption efforts [14].

Some of those who are presented with a question have to make a
conscientious decision to respond to or ignore it. A number of
factors are brought into consideration in this decision-making
process: whether they have sufficient expertise on the topic [15];
how many efforts does it take to post a reply [10]; how they
perceive their relationship with the asker [2]; and their eagerness
of offering help. To make this decision, they at least need to skim
the question by finding out the asker and the topic [9]. We denote
the attention cost for this process as CSkim.

If a helper decides to respond to the question, s/he needs to spend
time and attention in thinking and composing the response. The
cost of attention for answering the question is denoted as CAnswer.

Upon receiving an answer, the asker needs to evaluate its quality
and interpret its meaning in terms of his/her task. Not all
responses are of equal value and quality. The perceived expertise
of the helper and previous favorable interactions with him/her
assist askers in evaluating the answer [5]. We denote this cost of
attention as CEvaluate.

Assume a question is sent to N potential helpers. The Cost of
Collective Attention (CoCA) consumed for the communication
can be modeled as follows:

CoCA = CFind + CAsk // the cost of the asker
 + N*CInterrupt + p*N*CSkim // the cost of potential helpers
 + q*N*CAnswer // the cost of helpers
 + CEvaluate // the cost of the asker
where p is the ratio of potential helpers who skim question for
deciding whether to reply (0 ≤ p ≤1), and q is the ratio of helpers
who actually reply (0 ≤ q ≤ p).

3.2 Benefits
The benefits of situated knowledge collaboration come from the
asker, the helper, and onlookers. The asker obviously obtain the
most significant benefits by either saving his/her own time of
finding the necessary knowledge or gaining new knowledge that
s/he has not had. The benefit for the helper is mostly indirect. The
helper gains social capital that includes social recognition and
easiness of obtain help down the road.

Members who are passively involved in situated knowledge
collaboration can have two benefits: an increased awareness of
what the whole group is up to, and a serendipitous learning
opportunity of acquiring new knowledge. Benefits of onlookers
do not need to be obtained at the same time when the situated
knowledge collaboration takes place. If the collaboration can be
archived and become accessible, other people can still obtain the
“onlooker benefits” without being a real-time onlooker.

4. Cost Comparison Study through
Simulation
To illustrate the analytic power of the collective attention
economy, we conducted a simulation study to compare the cost-
benefit structure of two communication mechanisms:
conventional mailing list (ML) and the ephemeral mailing list
(EML) that we have implemented in the STeP_IN system [16].

The EML mechanism works as follows. Whenever a programmer
asks for information from his peers, s/he posts a question in the
same way as to a mailing list, without a prior knowledge of who

Presented at the CHASE (Human and Cooperative Aspects of Software Engineering) Workshop at ICSE2008, Leipzig, Germany, May,
2008.

the experts are. In other words its CFind is as low as that of ML.
EML differs from ML in that not all mailing list members will
receive the question. Instead, it routes the question to a very small
subset of the whole group that are automatically chosen based on
their technical expertise on the topic of the question and social
relationships with the asker. In other words, only those who are
able to and most likely willing to provide answers are interrupted
with the question, and the majority of other members who are
neither interested in the topic nor interested in helping the asker
do not need consume their attention on this particular question.
The question and answers are then archived in a repository to
retain the onlooker benefits for those members who do not
directly participate in the situated knowledge collaboration.
Details of the mechanism are described in [16].

4.1 Simulation Setup
The simulation study uses the mailing list archive of Lucene-Java
project (an open source project) in the period between 2001 and
2006. We have simulated how situated knowledge collaboration
would have taken place if the project had been using the EML
instead of conventional ML.
The 17,942 messages sent between 2001 and 2005 are used as the
base data to set up the technical expertise profiles and social
relationship profiles of the 2,282 members of Lucene-Java ML.
We then simulated how EMLs would be generated for the
questions posted in 2006, and compared the results with the actual
conversation threads in the mailing list. As shown in Table 1,
among the 20 threads that we simulated the generation of EMLs
in the STeP_IN system, seven cases show that all the actual
repliers were included in the simulated EMLs; eight cases show
some actual repliers were included; and five cases have no
matching. This means that if the Lucene-Java project had used the
EML mechanism, 15 askers (75%) would have been able to get
responses from their peers.
Table 1: Simulation results

4.2 Exploration
We now try to estimate how the EML mechanism changes the
cost structure of collective attention economy. We estimate the
cost of attention by multiplying the number of words in each
message and reading rate. We use 550 words per minute as the
skimming rate (http://en.wikipedia.org/wiki/Reading_rate), and
300 seconds as the time to compose a message according to the
data reported in [10].

For the sake of simplicity, we assume that 2,282 users who posted
messages are all members of the Lucene-Java ML. From our own

experience, we think it is reasonable to assume that not everybody
in the mailing list reads all messages. We therefore varied the
value p of the CoCA formula as follows: the number of users who
skim the first message of a thread, and the number of users who
skim the entire thread. Five sets of values were used: (a) 100%
skim the first message and 10% skim the entire thread; (b) 50%
skim the first message and 10% skim the entire thread; (c) 20%
skim the first message and 5% skim the entire thread; (d) 10%
skim the first message and 1% skim the entire thread; and (e) 10%
skim the first request and only repliers read entire thread.

Figure 2 shows the collective cost of attention spent per thread by
using the mean number of word counts for the whole mailing list.
If 100% of the Lucene-Java ML members skim the first message
of a thread, it would consume 1,001.80 minutes, which is more
than 16 hours. If 10% skim the first message, which is 228
members, it takes 80 minutes in total. Lucene-Java had 5,693
threads in total and 1,121 in 2006, so the total cost of consumed
collective attention is quite large, which is 2,376 weeks in total
and 506 weeks in 2006 if all the 2,282 users at least skimmed the
initial message of each thread (Figure 3).

As shown in Figures 2 and 3, using EML would significantly
decrease the cost of collective attention, as the number of users
who skim the messages but do not reply is greatly reduced. For
the 5 sets of p value, the reduction rates are 98%, 97%, 94%, 85%,
and 80% respectively.

This reduction could result in the lost opportunities of obtaining
help. For example, in five cases (Table 1), the repliers were not
selected to EML, and in the other 8 cases, some users who were
not selected to EML also contributed their expertise. If we
consider only the five cases as failures of knowledge collaboration,
then the benefits of EML drops by 25%; if we consider both five
cases and eight cases as failures (which is very strict), the benefits
of SIJ drops by 65%.

In fact, in the Lucene-Java mailing list, 20% questions (1,228 out
of 5,693) did not receive a single reply. Even if we assume only
10% of the ML members skims this kind of message, it still takes
1,541 hours that are completely wasted. If the same 1,228
questions were posted in EML and did not receive an answer, the
wasted cost is 291 hours.

4.3 Discussion
This simulation experiment only shows how EML has a different
cost-benefit structure as mailing lists. The variables used here are
not accurate; they are based on educated guess that draws from
existing studies. Those variables are likely to change in different
situations. However, this illustrates that CoCA formula we
proposed can be used to estimate the collective attention cost of
situated knowledge collaboration with different communication
mechanisms, and such estimation could provide the basis for
programming teams to make informed choice about the right
channel for their different collaboration needs.

The benefits difference of the two communication channels is
mainly dependent on the accuracy of identifying the right experts,
which in turns depends on the precision of the profiles of
technical expertise and social relationships. As Table 1 shows,
profiles that are mined from discussions in the mailing list only
can have 25%-75% accuracy in identifying the right group of
experts. We are cautiously optimistic that this success rate could
improve further if we are able to create technical profiles by also
analyzing the programs that each member has created.

Presented at the CHASE (Human and Cooperative Aspects of Software Engineering) Workshop at ICSE2008, Leipzig, Germany, May,
2008.

Figure 2: Collective Cost of Attention Per Thread

Figure 3: Collective Cost of Attention in Total

5. Concluding Remarks
The needs to balance attention and communication are recognized
in [6], which suggests two strategies to conserve attention
resources in communication by providing information
asynchronously and by reducing the frequency of interruption
through the aggregation of information. These strategies can be
subsumed in reducing the cost of CInterrupt. However, as we can see
from the formula, this cost is only a portion of the cost of
collective attention in collaboration.
We have seen many studies that point out the cost of interruption
and the overload of communication brought by ubiquitous
connectivity [3], but we still do not have a systematic way to
understand how to address the “dearth of attention” resulted from
those technologies. We are fully aware that to model concepts as
complicated and subjective as attention and collaboration should
not be taken lightly. The proposed formula is not meant to capture
everything. The main goal is to use this relatively simple
framework to analyze the factors that affect the economic
utilization of the collective attention of all parties involved, either
actively or passively, in situated knowledge collaboration. The
conceptual framework is not meant to cover all types of
collaboration that take place in software development but focusing
on situated knowledge collaboration only. A study has shown that
this type of ad hoc and situated knowledge collaboration takes up
to 41% of the programmer’s time [13], therefore improving the
economy of collective attention for this type of collaboration has a
major impact.

This paper has shown how to use the notion and formula of the
cost of collection attention to compare different communication
mechanisms and how it can help design new communication
mechanisms that have different cost-benefit structure by

manipulate some of the variables. By trying to change the number
N, we came up with the EML mechanism that is neither direct
email nor mailing list, but something in between email and
mailing list with the feature of persistent storage of discussions.
The comparison is not meant to rank the absolute superiority of
communication mechanisms, but give a clear understanding of
each mechanism so that programming teams can choose the most
appropriate communication channel for their varied knowledge
collaboration needs in their specific socio-technical environment.

6. References
[1] Arguello, J., et al., Talk to Me: Foundations for Successful

Individual-Group Interactions in Online Communities, in
Proceedings of CHI06. 2006, p. 959-968.

[2] Cross, R. and S.P. Borgatti, The Ties That Share: Relational
Characteristics That Facilitate Information Seeking, in Social
Capital and Information Technology, M. Huysman and V.
Wulf, Editors. 2004, The MIT Press: Cambridge, MA. p.
137-161.

[3] Dabbish, L.A. and R. Kraut. Controlling Interruptions:
Awareness Displays and Social Motivation for Coordination,
in Proceedings of CSCW2004. 2004.

[4] de Souza, C.R.B., et al., How a Good Software Practice
Thwarts Collaboration: The Multiple Roles of APIs in
Software Development, in Proceedings of FSE04. 2004:
Newport Beach, CA. p. 221-220.

[5] Flammer, A., Towards a Theory of Question Asking.
Psychological Research, 1981. 43: p. 407-420.

[6] Fussell, S.R., et al., Coordination, Overload and Team
Performance: Effects of Team Communication Strategies, in
Proceedings of CSCW98. 1998: Seattle WA. p. 275-284.

[7] Goldhaber, M.H., The Attention Economy. First Monday,
1997. 2(4).

[8] Herbsleb, J.D. and R.E. Grinter, Architectures, Coordination,
and Distance: Conway's Law and Beyond. IEEE Software,
1999. 1999(September/October): p. 63-70.

[9] Jackson, T., R. Dawson, and D. Wilson, The Cost of Email
Interruption. Journal of Systems and Information Technology,
2001. 5(1): p. 81-92.

[10] Lakhani, K.R. and E. von Hippel, How Open Source
Software Works: Free User to User Assistance. Research
Policy, 2003. 32(6): p. 923-943.

[11] McDonald, D.W. and M.S. Ackerman, Just Talk to Me: A
Field Study of Expertise Location, in Proceedings of
CSCW'98. 1998: Seattle, WA. p. 315-324.

[12] Reder, S., The Communication Economy of the Workgroup:
Multi-Channel Genres of Communication, in Proceedings of
CSCW1988. 1988, ACM Press: New York. p. 354-368.

[13] Robillard, P.N., The Role of Knowledge in Software
Development. CACM, 1999. 42(1): p. 87-92.

[14] Szoestek, A.M. and P. Markopoulos, Factors Defining Face-
To-Face Interruptions in the Office Environment, in
Proceedings of CHI06. 2006. p. 1379-1384.

[15] von Krogh, G., S. Spaeth, and K.R. Lakhani, Community,
Joining, and Specialization in Open Source Software
Innovation: A Case Study. Research Policy, 2003. 32(7): p.
1217-1241.

[16] Ye, Y., Y. Yamamoto, and K. Nakakoji, A Socio-Technical
Framework for Supporting Programmers, in Proceedings of
FSE2007. 2007. p. 351-360.

