
Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

Interaction Design as a Collective Creative Process

Kumiyo Nakakoji Yasuhiro Yamamoto
PRESTO, JST and RCAST, University of Tokyo
KID (Knowledge Interaction Design) Laboratory

RCAST, University of Tokyo, 4-6-1 Komaba, Meguro,
Tokyo, 153-8904, Japan

+81-3-5452-5286
kumiyo@ai.rcast.u-tokyo.ac.jp yxy@acm.org

Atsushi Aoki
SRA-KTL Inc.

3-12 Yotsuya, Shinjyuku
Tokyo, 160-0004, Japan

+81 3-3357 9011
aoki@sra.co.jp

ABSTRACT
This paper reports our case study on an ongoing
interaction-design-centered software development project
(ART project) viewed as an evolutionary collective
creative process. In this project, a visual interaction
designer and a programmer have collaboratively produced
a series of software application fragments, which are
executable interactive software objects, including a various
types of movie players, innovative 3D visualizations and
application systems. Visual interaction design is viewed as
a process of seeking for compromises between what are
desirable (expressed by the designer) and what are
possible (expressed by the programmer). In the
collaboration, each of the designer and the programmer
collects, represents, interacts with, and reflects on a various
types of representations. This paper characterizes the visual
interaction design task, presents our framework to analyze
the creative processes, and reports in detail how their
creative processes have been carried out.

Keywords
Visual interaction design as a creative process, collective
creativity, evolutionary creativity, case study, the ART
(Amplifying Representational Talkback) concept

INTRODUCTION
In early 2000, a project was formulated to design and
develop interactive systems to support experimenters in
conducting empirical studies. Since then, the project has
shifted its goal to focus more on the design and
development of intellectual creative tasks. The project is
called the ART project because its visual interaction design
is based on the ART (Amplifying Representaitonal
Talkback) design principle [15]. The ART principle
emphasizes the importance of visual interaction and the
power of external representations.
In the ART project, an interaction designer and an expert

programmer have been intensively collaborating with each
other and have produced a number of software application
fragments, which are executable interactive software
objects, including a various types of movie players,
innovative 3D visualizations and ART application systems
[8][16][17]. The programs are written in VisualWorks
Smalltalk and made publicly available as open source 1.
The goal of this paper is to report not details of these
artifacts produced from the ART project, but a case study
on this ongoing project viewed as an evolutionary
collective creative process. Through interviews both with
the designer and the programmer, we have found that each
of the designer and the programmer collects, represents,
interacts with, and reflects on a variety of representations
during the process. An interplay between the
representations generated by the designer and the
representations generated by the programmer plays a
critical role producing creative artifacts.
In what follows, we first give an overview of the ART
project and describe how the project has been carried out.
We then discuss the nature of visual interaction design and
interaction-design-centered software development and how
and why collaboration between the designer and the
programmer has been critical for the task. We present a
process model, which has four facets, consisting of
collection, representation, interaction, and reflection, as a
framework that characterizes the evolutionary collective
creative process. The following section describes what
representations each of the designer and the programmer
uses in their process.

THE ART PROJECT
A Project Overview: Artifacts
The ART project is based on the concept called ART
(Amplifying Representational Talkback) [15]. Based on
Donald Schoen’s design theory on reflection-in-action
[10], the project has focused on the role and effects of
external representations that play during the user’s thinking
processes [18]. The ART principle stresses two points: a

1 www.kid.rcast.u-tokyo.ac.jp/systems/ARTware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

C&C’02, October 14–16, 2002, Loughborough, Leic, United Kingdom.

Copyright 2002 ACM 1-58113-465-7/02/0010…$5.00.

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

user should be able to externalize what the user wants with
as little cognitive load as possible, and a user should be
able to perceive what has been externalized with as little
cognitive load as possible. The concept embraces the role
of perception as a compliment to cognition, and respects
the power of paper and pencil. Paper and pencil seldom
bothers our thinking processes, and with them, we can
externalize what we want to externalize, with various
degrees of precision and commitment [3][14]. The goal of
the project following the ART concept has been how to go
beyond paper and pencil.
The project has so far applied the ART design principle in
the design of interactive systems for early stages of linear
information design [16][17]. In linear information design,
such as collage-style writing, a user needs to construct
parts and the whole by trial-and-error. The parts and the
whole depend on each other and coevolve forming a
hermeneutic circle. To support linear information design,
instead of allowing a user to directly manipulate the linear
information, we provide a space for objects as parts
framing the whole. A user can freely place objects in a 2D
space, and the system automatically serializes the objects
from top-to-bottom or left-to-right, whatever
accommodates the “natural” order in the application
domain [17]. The spatial positioning of objects, a type of
spatial hypertext, allows users to externalize a variety of
“meta” comments for linear information design by using a
variety of visual cues, such as size, distance between
objects, or alignment. Figure 1 shows the architecture for
this interaction method, which uses spatial hypertext as an
instrument for early stages of linear information design,
consisting of ElementEditor (EE; for creating an object to
be placed in the space), ElementSpace (ES; the space), and
DocumentViewer (DV; for showing the serialized
information) (Figure 1).

Figure 1: The Architecture for Linear Information Design

used in the ART project
Four interactive systems have been designed and developed
based on this framework. Figure 2 shows the four systems:
ART#001 for collage-style writing, ART#002 for notes-
summarization, ART#003 for multimedia data analysis,
ART#004 for video editing. They are all for early stages of
linear information design using EE, ES, and DV. For
instance, in ART#003 a user can view multimedia data

(e.g., a subject’s video) in EE, and identify an interesting
part of the movie. The user can drag and drop the
segmented movie and place it in ES. The user may move
and resize the object; for instance, one might move
important factors toward the top, and make interesting parts
but unknown factors larger. The user may textually
annotate the positioned object. Each object together with its
annotation is serialized (from top-to-bottom or left-to-right
as the user specifies) and shown in DV in a table format.
The content of DV can be saved in an HTML format.

Figure 2: Four ART Systems Produced based on the

Architecture
The Jun-NSN library has evolved as the project produced
the four systems. The library is rich in its interaction idioms
especially for this particular architecture (Figure 1). For
instance, the library has several application fragments to
implement a “space” where a user can place multimedia
objects (text, movie, sound, image). The project has
accumulated multiple code fragments to manipulate the
space; for instance, to show a trajectory for an object as the
user is dragging it (Figure 3).

Figure 3: A Variety of Drawing Trajectories Provided by

the Library

A Project Overview: Processes
Having visual interaction design as its central focus, the

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

ART project members consist of an interaction designer, a
programmer, and several part-time test users. As a general
framework, the project has proceeded by iterating the
following:
(1) The interaction designer first draws sketches to

illustrate how a system should look and verbally
describes to the programmer how a user would interact
with the system.

(2) Based on the description provided by the designer, the
programmer implements necessary functionality and
shows executable programs to the designer.

(3) The designer uses and interacts with the programs, and
gives feedback to the programmer.

(4) The programmer fine-tunes the program based on the
feedback and makes the program available for test-
users, who further give feedback to the designer and
the programmer.

The ART project has been going through a cycle of two
phases: the individually working (IW) phase, which usually
lasts for two to three weeks, and the face-to-face
collaboration (FC) phase, which lasts for about a week
(Figure 4). The steps (1) and (2) above mainly take place
during the IW phase. The steps (3) and (4) take place
during the FC phase.

Figure 4: The Two Process Phases in the ART Project

If we look at the process more carefully, however, the
process is not as simple as illustrated as the above four
steps.
The interaction designer’s role was to prioritize what is
desirable and to make compromises with what is possible
in terms of programming and computational hardware
limitations. In doing so, the interaction designer closely
collaborates with the programmer in understanding what is
possible in terms of what is desirable.
The interaction designer produces sketches and describes to
the programmer what the designer thinks is a desirable
interaction. The programmer listens to the designer, and
implements application fragments, which are executable
objects that illustrate computational limitations (such as
rendering speed, and algorithms). By using tangible,
executable application fragments, the designer and the
programmer further discuss what can be and cannot be

achieved.
When the designer and the programmer both see that most
of the conflicting requirements are resolved and desired
functions are achievable, application fragments are
integrated within a single window resulting in a prototype
system. Test-users then use the system and identify likes
and dislikes about the system. Some of their criticisms are
taken into account and reflected in the system redesign, but
most of them are made further elaborated with the help of
the designer, and eventually the test-users often become
convinced why such design decisions are made as they are.
Overall, the communication goes both ways. It is not only
the designer showing the sketch and the programmer
implementing it (Figure 5, top), the programmer sometimes
implements “cool stuff” and shows the designer, then the
designer tries to understand the implication of the
possibility (Figure 5, bottom).

Figure 5: Two Way Designer-Programmer Communication
The next section takes a closer look at this collaboration as
a collective creative process.

VISUAL INTERACTION DESIGN IN THE INTERACTION-
DESIGN-CENTERED SOFTWARE DEVELOPMENT
From the very beginning, the ART project has focused on
visual interaction design. In order for a system to be an
effective cognitive tool, visual interaction design plays a
critical role [13]. Visual interaction design is neither
information visualization nor user interface design. It is
about how a user interacts with the system and how the
system gives feedback to the user in response to the
interaction through a visual representation displayed on the
screen.
The ART project we report here has been carried out as an
interaction-design-centered software development project
[9].
Based on a goal stated at an abstract level, such as “to
produce a movie editing system, which would allow a user
to clip a part of the movie through natural interaction,” the
interaction designer identifies a set of design requirements
based on the ART design principle through a number of
sketches of visual appearance for the system. In this
process, the designer does not just draw a picture of “the”
ideal interface. Rather, the designer tries to take into

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

account what would be the limitation of the computational
processing speed, a screen resolution, or required memory
size.
When the designer is not sure about such technical aspects,
for instance, how long it would take to extract 20 frames
out of the 600x800 30-minute movie, the designer asks the
programmer for more information. Design requirements
identified in this manner, for instance, “the system needs to
have two scrollbars; one is for the user to see which part of
the whole movie is currently clipped, and the other is for
the user to focus on the currently clipped part allowing the
user to extend or shorten the part by slightly moving a
handle on the scrollbar,” are communicated with the
programmer through some of the produced sketches, verbal
descriptions and gestures.
The programmer then creates necessary object models for
achieving the requirements, such as handling a movie or
controlling two scrollbars. Detailed design decisions on
design features that are necessary to be made in order to
program, such as in what timing the system updates the
movie view with what movie frame, emerge and are
identified during the programming process. For some of the
design features, the programmer makes a decision by
himself and proceeds the programming task without asking
the designer by assuming what the designer would say
based on the ART principle. For other design features,
however, the programmer pauses his programming task and
asks the interaction designer how to decide.
Thus, the visual interaction design task can be viewed as a
process of seeking for the “right” balance between what is
desirable (specified by the designer) and what is possible
(demonstrated by the programmer) (Figure 5). Because of
the limitations imposed by the computational power,
expressiveness and resources, some design requirements
need to be prioritized and compromised; making design
decisions is a process of making priority and seeking for
compromises. As a result of making such compromises,
design features are implemented and instantiated as
executable application fragments. As stated above, when
the designer and the programmer both see that most of the
conflicting requirements are resolved and desired functions
are achievable, application fragments are integrated within
a single window resulting in a prototype system (Figure 6).
We view the software produced by the ART project as
creative artifacts. They are creative because they represent
innovative solutions while providing useful functionality
[6]. They are neither a result of the interaction designer’s
creative process nor that of the programmer’s creative
process. They are a result of the synergistic collaboration
between the designer and the programmer, not necessarily
through synchronous collaboration to make a decision, but
through mutual respect and complementary knowledge
supplement dissolving the issue of symmetry of ignorance
[1]. They are a result of interplay between the two

stakeholders who have expertise in two different domains:
in designing, and in programming.

Figure 6: From Sketches to Prototypes via Application

Fragments
The next section provides a framework that guides our case
study on this creative process.

A PROCESS MODEL FOR COLLECTIVE CREATIVITY
Characterizing The Creative Process
The process followed by the ART project has been neither
a revolutionary nor impromptu, but an evolutionary
creative process [12]. Designed artifacts emerge as the
designer and programmer collaborate with each other over
time. Artifacts are produced through a small, incremental
process rather than as a historical revolutionary process.
Each design decision made during the project is not
necessarily a large leap; however, the collection of such
small decisions have resulted in quite innovative and useful
solutions [6].
Shneiderman [12] differentiates three perspectives on
creative people: inspirationalist, who depend on informal
representations, such as free association, brainstorming,
and lateral thinking, structuralist, who use more formal,
structured representations such as charts, decision trees, or
structured diagrams, and situationalist, who exhibit their
creativity through a social setting working within or across
communities of practice. Stakeholders involved in the ART
project show a combination of the three perspectives.
The interaction designer demonstrates a quite strong
inspirationalist perspective. The designer pushes his
creative ideas mainly through hand-written sketches and
informal visual representations, interacting with emerging
meanings from such representations.
In contrast, the programmer demonstrates a structuralist
perspective. Programming is a structure-oriented process
by nature. The programmer needs to deal with the MVC
(Model-View-Controller) architecture [5] with which he
interacts to uncover tacit requirements and unattended
design decisions.

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

The collaborative aspect between the two people shows the
situationalist perspective. As discussed above, visual
interaction design is a process of seeking for compromises
between what is desirable and what is possible. The
designer’s idea needs to be put in the context of
programming through the communication with the
programmer. The programmer’s design decisions in
programming, some of which are not articulated by the
designer, have to be evaluated in the eye of the designer to
make sure if such decisions are in harmony with the rest of
the design features.
We view the process carried out in the project as a
collective creativity process. Collective creativity is a term
coined to describe the phenomenon where concepts and
understanding emerge in people's mind through interacting
with knowledge in the world; with external representations,
with other people, or with computer systems [7].
Both the interaction designer and the programmer of the
ART project exhibit creative processes by using external
resources and representations generated by each other.
Representations that the interaction designer generates and
interacts-with are primarily sketches of visual appearances
of systems to be created. He also uses application
fragments that are programmed by the programmer, and
other application programs that are commercially available
or available as shareware. The programmer not only uses
sketches produced by the designer, but also resorts to
tangible physical artifacts, such as sculptures and buildings,
as well as interactive demos programmed by other people.
The following section describes in detail what types of
representations are used for what purposes by each of the
two stakeholders in the ART project.

A Four-Faceted Model
In order to study the project as characterized above, we
must have a framework to analyze the evolutionary
collective creative process, which is partially inspired,
partially structured, and partially situated.
There have been a number of models proposed to specify a
process of creative activities. For instance, Csiksentmihalyi
[2] represents a creative process consisting of collection,
incubation, insight, and evaluation. A creative person
collects information that may or may not be relevant to the
task, incubates the information that have been accumulated
with a specific goal of the task in mind, obtains insight as a
creative leap, and evaluates the acquired insight to make
sure that the result is innovative and useful. Although not
imposed, the model presupposes a linear progression with
an emphasis on the importance of “insight,” which takes
place within a creative person’s mind. The model is more
appropriate for specifying revolutionary, historical
creativity of individuals rather than evolutionary ones
where a number of small steps made through a cycle
matter.

Shneiderman proposes the GENEX model for an
evolutionary creative process, which consists of the
following four steps [12]:
• collection: to learn from previous works and artifacts

stored in the world;
• relation: to consult with peers and mentors at various

stages of the process;
• creation: to explore, compose, and evaluate possible

solutions; and
• donation: to disseminate the results in the world.
This model emphasizes the importance of externalization
and communication with other people, and captures an
evolutionary creative process of a person who demonstrates
individual creativity. This model, however, is not framed to
stress the interplay among stakeholders as a whole.
In our case study, the goal has been to analyze not an
individual creative process of each stakeholder, but a
collective creative process, which emerges through both
individual work and collaboration between the designer
and the programmer. We have to focus more on the
relating and donating steps in the GENEX model to see
how each stakeholder affects each other’s design decisions
leading to a creative artifact as a collective result.
To serve for this purpose, we have developed a model to
represent a process of evolutionary collective creativity.
The model has the following four facets (Figure 7):
collection, representation, interaction, and reflection.

Figure 7: The Four-Faceted Model for Individuals Engaged

in Collective Creativity
In this model, each stakeholder of the group, who
demonstrate collective creativity, collect external
information from outside resources. At the same time, each
of them generates external representation, not necessarily
as a creative artifact but as a medium to interact-with
through the reflection-in-action process [10][11].
Reflection plays the central role integrating the other three
aspects.
This model does not presuppose a linear process. Rather, it
views a process as going back and forth among the four
facets. Multiple facets may occur simultaneously; it is
impossible to distinguish one type of activity from another
in a definitive manner.

THE CREATIVE PROCESS DEMONSTRATED IN THE
ART PROJECT
Based on the model described in the previous section, we
have analyzed the evolutionary collective creative process

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

of the ART project. This section shows a result of our case
study by basing our viewpoint on the use of representations
throughout the process: what has been collected,
represented, interacted-with, and reflected-on (1) by the
interaction designer in the IW phase, (2) by the
programmer in the IW phase, and (3) by the two of them in
the FC phase of the process.

Representations Used by the Interaction Designer
In order to get ideas for visual interaction design, the
interaction designer spends quite a long time in the
collection process. In the same way as graphic designers
create their own scrapbooks by clipping printed images and
graphics and constantly browse them, or architects clip
pictures of buildings and hang them on the wall, the
interaction designer needs to be surrounded by a large
amount of resourceful artifacts (Figure 8).
One type of mostly used such artifacts by the interaction
designer is application software programs that are available
as commercial products or as shareware available through
the Web. By actually using and interacting with such
programs, the interaction designer explores them from
perspectives such as:
• what is an underlying intention embedded within the

program;
• how the intention is mapped to tangible functionality;
• how interaction is implemented to communicate the

functionality with the user; and
• whether the intention is critical for his interaction

design.
For instance, in designing visual interaction for a user to
author a hierarchical structure, the interaction designer
interacted with a number of file-browser programs
provided for Windows, Mac, and Linux; including
Windows Explore, UNIX C-Shell, iPod, and coela for Mac.
While interacting with the programs, the interaction
designer examined aspects such as how to deal with the
absolute path and how to navigate through the hierarchical
structure. While doing so, the interaction designer
gradually identified design intentions that were relevant to
his design task.
The interaction designer also collects experiences of
interacting with physical artifacts, including pencils, tables,
chairs, or pairs of scissors. Although visual interaction
design deals with representations within the computer
world, the designer needs to understand the nature of
physical world and how people interact with the real world.
Interacting with physical objects helps the designer identify
what are critical aspects and constraints of the real world
and how people make use of them.
Through the processes of interacting with external
representations, the interaction designer generates a
number of sketches as designed artifacts. Some of the

sketches are shown to the programmer as a part of design
requirements, but some of the sketches are simply kept as a
reminder for the designer himself for later reflection. Those
sketches that are given to the programmer are the ones that
are plausible to be programmable. Those sketches that are
not shown to the programmer but kept as indices for the
designer’s thoughts are the ones that do not seem to be
possible with the current computational power and
resources, but would be possible in a near future when the
power of hardware and processing speed improve. Thus,
the designer donates his sketches for his future design task
(see Figure 8).

Figure 8: Representations Used by the Interaction Designer

Representations Used by the Programmer
The programmer mostly uses other open source programs
written by other people as an external source of
information. He learns what object-oriented models are
used as an underlying architecture and how it is
implemented (Figure 9).
In the same manner, the programmer attends to other
representations, such as sculptures and buildings. By
looking at such physical representations, the programmer
tries to understand how they are built; the programmer
resorts to the representation to explore possible processes
of creating an artifact. When looking at an old pagoda in
Japan, for instance, the programmer tries to understand in
what order which parts of the pagoda have been assembled.
Based on this interaction with the representation, the
programmer makes an assumption of the way to create an
artifact and validates the assumption by actually
implementing it.
His assumption sometimes turns out to be wrong or
insufficient to implement such an intended artifact.
Different from visual interaction design generated by the
interaction design in the form of sketches, programs can be
“right” or “wrong.” The program does not run properly if
implemented in an inappropriate manner. “Wrong”
programs do not necessarily mean that they are buggy.
They are sometimes “wrong” because they do not run fast
enough, or they take too much memory space. When the
programs he produced turn out to be “wrong” in this
manner, the programmer stores what he has generated: the
underlying model and actual source code. Such programs
would be “right” when the hardware performance

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

improves. Or his programs might run properly in a
different context.
Thus, in the same way as designer saves his sketches for
future references, the programmer saves his programs for
future usage. He saves programmed source code for future
reuse. In the ART project, we have observed that the
programmer reused his program that he wrote five years
ago. Donation process works for himself in a longer period
of time (see Figure 9).

Figure 9: Representations Used by the Programmer

Representations Used in Collaboration
As we described above, design requirements are
communicated through sketches. Application fragments,
which are executable software programs, also serve as
communicative media between the designer and the
programmer as illustrated in Figures 5 and 6. Figure 11
shows examples of the application fragments that have
been produced during the ART project.

Figure 10: Application Fragments Produced by the ART

Project
We have identified four interesting aspects in the use of
such application fragments as communication media.
(1) To instantiate sketched design features into tangible
forms. Application fragments are often used to instantiate
design features sketched by the interaction designer. When
the designer shows sketches to the programmer for the first
time for a new design goal, the programmer tries to
produce executable objects, which looks similar to the

sketches, as quick as possible. This is necessary because
the designer needs to actually see the object on the screen
instead of on paper.
Once the designer sees the object and gives a go for the
design, the programmer starts producing more robust
underlying object models, and re-implements the interface.
While designing the object model, the programmer tries to
make the model as rich and as flexible as possible so that
he can respond to the emerging designer’s requests in
tuning and adjusting the design. Thus, the focus on the
visual interaction design changes the way in programming
software.
(2) To examine what is computationally feasible. The
programmer implements application fragments to examine
how much CPU power and memory is required for a
certain design feature and how acceptable in the designer’s
eye the computer’s response time is under regular computer
settings. For instance, in Figure11-(a), a set of residue
images of a text object as a trajectory in a 2-D space is
implemented to see how many frames should be produced
while the user drags the object in the space. Displaying too
many residue images will require too much CPU power
slowing down the display speed. The programmer and the
designer had to collaboratively make a decision by making
the compromise between what was desired and what was
computationally feasible by actually interacting with the
prototyped application fragment.
(3) To demonstrate what is computationally possible. The
programmer implements application fragments to show
what can be done with the current computational power
even if they are not asked by the interaction designer. For
instance, Figure 11-(b) shows a freehand-note application
fragment. With this application fragment, while a user
freehand-sketches in a window, the system keeps tracks of
time taken for each stroke. When the user finishes and
invokes the 3D view, the system converts the 2D sketch
into a 3D model, with the time spent as the Z-depth. By
rotating the view, the user can see in what order and in
which speed the user has drawn the sketch.
The programmer has implemented this application
fragment to show the designer how the user’s freehand
stroke is temporary traced. By interacting with the
application fragment, the interaction designer has started
thinking about what would be possible by having this kind
of functionality, for instance, how the time could be
mapped and represented in freehand applications.
(4) To develop common references. During the time when
the designer and the programmer are focusing on a
particular design requirement, they usually start using
nicknames for some aspects of the envisioned system. They
do not refer critical elements of the interface by “dry”
names or functionality labels, such as “the second
scrollbar.” Instead, they refer to them by nicknames, such

Appeared in the Proceedings of Creativity and Cognition2002, Loughborough, UK, ACM Press, pp.103-110, October, 2002.

as “the tiny little boy” or “the elder brother” (translated
from Japanese). These nicknames seem to play a critical
role to make sure that they are referring to the same, critical
aspect of the interface, and at the same time, the way the
nickname is chosen helps them communicate implied
meanings associated with the naming.

SUMMARY
This paper reports our case study on the ART project, the
visual interaction design-centered software development
project viewing as carrying out an evolutionary collective
creative process. The interaction designer and the
programmer collectively produce creative artifacts by
communicating through external representations, including
sketches and application fragments. Each of the two
stakeholders uses outside resources for their creative
activity, such as other interactive systems, physical
artifacts, and programs. Both the designer and the
programmer save their generated representations even if
they are not useful for the current task. They “donate” such
representations for their later creative tasks.

ACKNOWLEDGMENTS
We thank Yunwen Ye, Hiroko Asaoka, and Akio
Takashima for their help in carrying out the ART project,
conducting the case study, and in analyzing the result.

REFERENCES
1. Arias, E., Eden, H., Fischer, G., Gorman, A., Scharff,

E., Transcending the Individual Human Mind - Creating
Shared Understanding through Collaborative Design,
ACM Transactions on Computer-Human Interaction,
Vol.7, No.1, pp.84-113, March, 2000.

2. Csikszentmihalyi, M. and Sawyer, K. Creative Insight:
The Social Dimension of a Solitary Moment, in The
Nature of Insight, R.J. Sternberg and J.E. Davidson
(eds.), MIT Press, Cambridge, MA, 1995.

3. Do, Y-L., and M.D. Gross. Inferring Design Intentions
from Sketches: An Investigation of Freehand Drawing
Conventions in Design, CAADRIA '97 - Proceedings of
the Second Conference on Computer Aided
Architectural Design Research in Asia, Liu, Y.-t., Tsou,
J.Y., Hou, J.-H. (Eds.), Hu's Publishers, Taipei, 1997.

4. Fischer, G., and Nakakoji, K. Computational
Environments Supporting Creativity in the Context of
Lifelong Learning and Design, Knowledge-Based
Systems Journal 10, 1 (June 1997), Elsevier Science
Publishers, Amsterdam, the Netherlands, 21-28.

5. Lewis, S. The Art and Science of Smalltalk, Prentice
Hall, 1995.

6. McLaughlin, S. and Gero, J.S. Creative Processes - Can
They Be Automated? in Modeling Creativity and
Knowledge-Based Creative Design (Reprints of the
International Round-Table Conference: Modeling
Creativity and Knowledge-Based Creative Design,

Heron Island, December 1989), 69-94.
7. Nakakoji, K., Ohira, M., Yamamoto, Y., Computational

Support for Collective Creativity, Knowledge-Based
Systems Journal, Elsevier Science, Vol.13, No.7-8,
pp.451-458, December, 2000.

8. Nakakoji, K. Yamamoto, Y., Reeves, B.N.,
Takada,S.,Two-Dimensional Positioning as a Means for
Reflection in Design, Design of Interactive Systems
(DIS'2000), ACM, New York, NY, pp. 145-154,
August, 2000.

9. Nakakoji, K., Yamamoto, Y., Aoki, A., Third Annual
Special Issue on Interface Design, Interactions, ACM
Press, Vol.IX.2, pp.99-102, March+April, 2002.

10. Schoen, D A, The Reflective Practitioner: How
Professionals Think in Action, Basic Books, NY, 1983.

11. Sharples, M. Cognitive Support and the Rhythm of
Design, Artificial Intelligence and Creativity, Dartnall
T. (Ed.), Kluwer Academic Publishers, the Netherlands,
385-402, 1994.

12. Shneiderman, B., Creating Creativity: User Interfaces
for Supporrting Innovation, ACM Transactions on
Computer-Human Interaction, Vol.7, No.1, pp.114-138,
March, 2000.

13. Weed, B., Visual Interaction Design: The Industrial
Design of the Software Industry, ACM SIGCHI
Bulletin Vol.28 No.3, July 1996.

14. Yamamoto, Y., Nakakoji, K., Takada, S. Hands-on
Representations in a Two-Dimensional Space for Early
Stages of Design, Knowledge-Based Systems Journal,
Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

15. Yamamoto, Y., Amplifying Representational Talkback:
Interactive Systems Using Spatial Positioning to
Support Early Stages of Information Design, Doctoral
Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, Japan,
March, 2001.

16. Yamamoto, Y., Nakakoji, K., Aoki, A., Visual
Interaction Design for Tools to Think with: Interactive
Systems for Designing Linear Information, Proceedings
of the Working Conference on Advanced Visual
Interfaces (AVI2002), ACM Press, Torento, Italy,
pp.367-372, May, 2002.

17. Yamamoto, Y., Nakakoji, K., Aoki, A., Spatial
Hypertext for Linear-Information Authoring:
Interaction Design and System Development Based on
the ART Design Principle, Proceedings of
Hypertext2002, ACM Press, pp. 35-44, June, 2002.

18. Zhang, J, The Nature of External Representations in
Problem Solving, in: Cognitive Science, 21(2), pp.179-
217, 1997.

