
Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

1

EVIDII: An Environment for Constructing Shared Understanding

Through Visualizing Differences of Impressions

Masao Ohira1, Yasuhiro Yamamoto1, Kumiyo Nakakoji1,2,3
 1Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama-cho, Ikoma, Nara, 630-0101, Japan
{masao-o, yasuhi-y, kumiyo}@is.aist-nara.ac.jp

2Software Engineering Lab., SRA Inc.
3PRESTO, JST

ABSTRACT

This paper presents our approach to develop a computer
system that supports cross-cultural communication between
clients and software designers. Communication between
clients and designers often “breaks down” because the two
belong to different “work cultures;” in each of which they
use their own vocabularies and symbol systems. We have
developed EVIDII (an Environment for Visualizing
Differences of Individual Impressions) as a cross-cultural
communication medium for such collaboration. EVIDII
visualizes relationships of three sets of data persons,
(visual) images, and affective words (such as “refreshing”
and “warm”). EVIDII supports three types of interactive
functions (maps, perspectives and viewers) allowing
designers and clients (1) to become aware of differences of
individual impressions of images and the use of words, and
(2) to motivate them to actively discuss their differences.
User studies have indicated that communication between
clients and designers is enhanced through constructing
shared communicative environments by using EVIDII.

KEYWORDS

Cross-cultural communication, Visualization,
Human-computer-interaction, Software design

INTRODUCTION

Design tasks in complex domains are intrinsically
collaborative. Complexity in design arises from the need to
synthesize different perspectives on a problem. These
perspectives originate from different work cultures, such as
those of clients and designers. The challenge in
cross-cultural design is to achieve shared understanding
between groups of people that see the world in

fundamentally different ways. System development is
difficult “not because of the complexity of technical
problems, but because of the social interaction when users
and system developers learn to create, develop and express
their ideas and visions ” [5].

Two areas of research have developed to address the issues
of collaboration and communication in design.
Participatory design approaches try to give clients a voice
in design [2]. Most do so by either requiring the clients to
operate in the designers’ world or the designers to operate
in the clients’ world. Both of these alternatives underutilize
the skills of either clients or designers. Computer-supported
cooperative work (CSCW) approaches often emphasize the
use of computer tools to support physical coordination
among stakeholders from a common culture working on
shared materials, possibly at the same time [6].

This paper presents our approach to supporting
collaborative design among stakeholders from different
work cultures. Rather than forcing stakeholders to operate
outside of their own cultures, we support them to construct
a shared communicative environment [7] that bridge
between the cultures. Rather than emphasizing physical
coordination among designers, our approach emphasizes
conceptual coordination among designers and clients. We
define conceptual coordination as a process (rather than a
state) of establishing and maintaining a shared
understanding among the stakeholders in a design project.

EVIDII [9] (an Environment for Visualizing Differences of
Individual Impressions) supports effective communication
processes through creating shared understanding by
visualizing differences among individual impressions of
images and words. Using EVIDII, each client and designer

Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

2

associate (visual) images (such as photographs and graphic
images) with affective words (such as “refreshing” and
“warm”). The system then visualizes relationships among
the three sets of data persons, images, and words in
a two- or three-dimensional space. By interacting with the
visualization interfaces, both clients and designers
gradually develop a shared understanding by asking
questions such as “what does the client mean by using the
word pretty,” “how does the client think of this particular
image,” or “which designers find this image cool.” EVIDII
provides a shared communicative environment, where the
stakeholders can ground their communications for software
design [7].

In this paper, we first discuss issues and challenges in
supporting communication in software design. We argue for
the importance of developing shared understanding and
mutual knowledge through client-designer communication
in design activities. We then present our approach and
introduce the EVIDII system. Two scenarios illustrate how
the EVIDII system supports the development of shared
understanding and knowledge between clients and software
designers by visualizing differences in impressions. The
paper concludes with discussions of the approach.

IMPORTANCE OF COMMUNICATION IN DESIGN

ACTIVITY

Design is collaborative in nature [4]. The predominant
activity in designing complex systems is the participants
teaching and instructing each other [5]. Because complex
problems require more knowledge than any single person
possesses, communication and collaboration among all
involved stakeholders are necessary. Clients understand a
problem and designers know how to solve the problem.
Rittel termed this situation “symmetry of ignorance” [10].
That is none of these carriers of knowledge can guarantee
that their knowledge is superior or more complete
compared to other people’s knowledge. To overcome the
symmetry of ignorance, as much knowledge from as many
stakeholders as possible should be activated with the goal
of achieving mutual education and shared understanding.

This communication poses two challenges: (a) neither
clients nor designers can completely articulate what they
want and what they know, and (b) communication between
designers and clients sometimes breaks down because they
use different “languages” [3].

Clients and designers belong to different “work cultures”

[1]. Bodker and Pedersen [1] point out that an
organizational culture can be observed through physical
“artifacts” (such as office layout, decoration, work tools and
dress code), “symbols” (such as stories, sayings, jargons,
anecdotes and metaphors), and “work practices” (such as
work routines, mode of cooperation, gestures and rituals).
Cultural manifestations are easy to obtain but difficult to
interpret, because they are ambiguous and may hold
multiple meanings and understandings. Clients and
designers have developed their own value systems and
beliefs within their own cultures. Meanings of words may
differ between cultures [11], and those who are outside of a
certain culture may not necessarily understand a
representation. When people who are collaborating do not
share the same culture, knowledge, values, and assumptions,
mutual understanding can be especially difficult. Such
understanding is possible only through “the negotiation of
meaning” [8].

In software design, clients and designers need to perform
cross-cultural collaboration and, therefore, need such an
environment as gradually constructing mutual and shared
understanding.

The goal of our research is to support this cross-cultural
communication process between clients and software
designers. Instead of trying to develop a stable ontological
mapping between two languages, our approach is to use a
computational environment that makes them aware of the
existence of differences in their expressions for
representing impressions. Once they become aware of the
differences, people are good at using the breakdown as an
opportunity to develop further shared understanding.

The next section describes EVIDII (an Environment for
Visualizing Differences of Individual Impressions), which
supports cross-cultural communication by helping clients
and software designers in constructing shared
understandings through finding and recognizing differences
of “impressions.”

THE EVIDII SYSTEM

EVIDII first asks users to associate (visual) images with
affective words. Then, the system provides interactive
interfaces that visualize the relationships among the three
sets of data persons, images, and affective words.

Communication between clients and software designers
using EVIDII proceeds as follows: Both clients and

Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

3

software designers associate images with words using
EVIDII. By using EVIDII, they may discover differences in
the associations, such as the use of words or the use of
images. This discovery motivates them to talk about the
differences. By iterating the above two steps, they gradually
develop shared understanding.

In this section, we first briefly describe the functionality of
the EVIDII system. We then describe how users find
differences in their impressions using EVIDII.

Functions of EVIDII

The EVIDII system deals with two sets of “objects (e.g.,
images and words)” and a set of “people.” EVIDII allows
users to survey how “people” think about a set of
“objects” or how “people” associate objects from one set of
objects to another, for example, how people think of images.
In this paper, we use a set of visual images and a set of
affective words as the two sets of objects.

The Word List Editor (Figure 1-(a)) allows users to specify
the set of words that are to be used (listed in the left side of
the Word List Editor). Users can add, modify or remove
words from the set of words. The Image Object List Editor
(Figure 1-(b)) allows users to specify the set of visual
images in the GIF or JPEG format. Figure 1-(c) shows the
User List Editor, with which users can be registered. Each
user is assigned an icon image, which is used when
visualizing the relationship between the objects. Figure

1-(d) is the User Profile Editor, with which each user can
associate images with more than one word.

The EVIDII system provides three types of interactive
functions:
• maps,
• perspectives, and
• viewers.
These functions are used to visualize the two sets of objects
and the set of people, along with their relationships. Users
can “discover” new relationships as well as examine a
specific relationship in more detail from what they have
discovered.

Maps

Each map is a visualization of the set of objects in a two- or
three-dimensional space and provides a basis for how users
can view the relationships among the sets of objects. A map
can be either subjective or objective. An objective map is
based on computationally derivable properties of the set of
objects. Taking a set of images for instance, an example
objective map would use the HSB (Hue, Saturation and
Brightness) value of the most frequently used color of each
image as the three-dimensional coordinates. Each image,
then, would be positioned on the map according to the
coordinates. A subjective map has the users decide on
where each of the objects should be positioned within the
two- or three-dimensional space. Taking a set of affective

(a)

(d)

(b)

(c)

(e)

(a)

(d)

(b)

(c)

(e)

Figure 1: (a) Word list editor (b) Image object list editor (c) User list editor

(d) User profile editor (e) Subjective map editor

Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

4

words for instance, “cool” and “cold” can be positioned far
away from “warm” and “hot” in a two-dimensional space.
Figure 1-(e) shows the Subjective Map Editor. Users can
position the set (or subset) of the words, that were specified
in the Word List Editor, in the two-dimensional space in the
direct manipulation style.

Perspectives

Users can change the perspective or how they look at the
data to understand the relationships among the sets of
objects. For example, if the user initially takes an image
perspective, the user can find “the person who selected this
image” and “the words that were associated with this
image.” The user can then change the perspective to person,
in which case the user can examine “the words that were
associated with this image by that person” in more detail.
The user can also change the perspective to image, in which
case the user can examine “the persons that associated this
word to this image.”

In this way, the perspective function allows users to change
how they look at the data according to what the users want
to know. Users can understand not only the relationships
among the three sets of data but also characteristics of the
sets of objects as a whole. They can further understand
more minute characteristics concerning specific objects.

Viewers

Viewers are used to display a visualization of the
relationship among the sets of objects on a particular map.
Each viewer allows users to take a certain map and certain
perspectives. When the user changes perspectives, the
viewer dynamically changes the visualization. Figures 2-(a),
(b) and (c) show viewers taking various perspectives and
maps. The top-left window of a viewer shows a list of maps.
Users can select a map by clicking on one of the maps. The
middle-left window lists a set of images and the bottom left
window shows a list of names representing persons.
Clicking on one of the images or on one of the individual
list allows users to select an image perspective or a person
perspective. Figure 2-(a) shows an example of a viewer that
shows the results when taking an image perspective by
selecting one of the images, while Figure 2-(b) shows a
viewer using the same map taking a person perspective by
selecting one of the persons. Figure 2-(c) meanwhile shows
a viewer taking a person perspective but using a different
map.

USING EVIDII IN SOFTWARE DESIGN PROJECTS

This section presents scenario illustrating how EVIDII can
be used to support a variety of software design processes,
and results of our user observations.

(a)

(b)

(c)

(a)

(b)

(c)

Figure 2: (a) Viewer taking an image perspective (b) Viewer taking a person perspective

(c) Viewer using a different map

Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

5

Two scenarios

Let us take the graphical user interface (GUI) design, as a
typical collaborative situation between clients and designers
demonstrating how EVIDII supports their cross-cultural
communication.
1. Clients and/or designers (henceforth users) first use the

Image Object List Editor to input a set of sample GUI
screenshots of a variety of software (e.g., word
processors, spreadsheet programs, mailers, etc) as visual
images.

2. They then use the Word List Editor to specify a set of
words that are concerned with quality of software, such
as “useful,” “efficient,” or “functional,” as well as those
concerned with ambience of how they look, such as
“cool,” “simple,” or “cute.” They then register
themselves in the system using the User List Editor.

3. With the User Profile Editor, each user associates
words with images, i.e. chooses words that is deemed to
“appropriately” describe each screenshots image that
EVIDII displays.

4. The users choose a map and visualize the results on a
viewer.

5. The visualization may cause the users to see
differences between how each of them “feel” about
certain screenshots. This will then cause them to ask
questions (such as “why did you have such an
impression with the look of the screenshot?”) to
understand each other more deeply.

In this case, suppose the client had a vague requirement, i.e.
“the GUI should be cool-looking.” The designer needed to
understand what the client meant by “cool.” What sort of
feeling did the client have in mind when using the word
“cool?” They alleviated this problem by using the
perspective function in EVIDII. The client and the designer
examined the screenshot images that each had thought to be
“cool.” This resulted in their understanding what types of
images each of them considered as “cool.” They further
took one of the images and discussed what caused the client
to consider that to be “cool” in more detail.

As another case, suppose a client has a certain set of
favorite GUI components (e.g., icons, layouts, menu
appearances) from existing software applications. Since the
client does not necessarily have GUI design knowledge
about how to combine those components, however, simply
using those favorite ones may possibly result in a chaotic
design that lacks coherence. This problematic situation can

be solved by using EVIDII.

The client first sets as visual images in EVIDII a variety of
GUI components including their favorite ones. Then, each
of the client and software designers associates the images
with the words set up in EVIDII a priori.

After the survey, the client and the designers use EVIDII to
examine words that had been associated with icons and
layouts that are the client’s original favorites. They would
then be able to understand that certain combinations of GUI
components would not lead to the effect that the client had
originally intended.

User observations

We observed that both clients and designers using EVIDII
could identify differences in how they used and felt about
words and images, and then were motivated to “talk about”
the differences resulting in a shared understanding about
their design tasks. By using three types of interactive
functions of EVIDII (maps, perspectives and viewers),
users could closely look at “what surprised” them, and
verbally ask follow-up questions to each other. This then
resulted in asking further questions and searching for other
interesting relationships. This process was repeatedly
observed during the user study sessions.

In short, EVIDII evoked users to become aware of
word-image associations that “surprised” them, which can
then be further examined through various types of viewers
integrated within EVIDII. This guides the design
stakeholders in conducting smoother communication and
helps them to develop shared understanding.

DISCUSSION

In software design, software designers need to keep
focusing on the following two questions:
• What do clients want?
• How do clients like the produced artifacts?
To address the first question, clients and designers use
explicit representations (such as mockups and prototypes)
to communicate their intent. However, this approach
sometimes does not work because there can be “different
images” of such external representations by each
stakeholder.

To illustrate this point, an interesting anecdotal story was
told by one of the software designers we have interviewed.
In one design meeting, a concept of design was agreed

Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

6

among designers that “our product would be like Mickey
Mouse.” While Mickey seemed to be a concrete enough
representation to communicate the intention, one designer
thought he had to use bold lines “like Mickey” and another
designer thought that she had to use round forms “like
Mickey.” The representation of Mickey has many aspects:
shape, the thickness of lines, colors, to name a few. When
the designers agreed on the use of Mickey for their concept
design, each designer was focusing on different aspects of
Mickey resulting in a communication breakdown.

By using EVIDII in ways illustrated in previous section, it
is possible to explore clients’ requirements in a more
concrete manner; for example, “what functions do clients
need or not need?” and “what ‘taste’ of software do clients
want, Windows-like, Unix-like or Mac-like?” before
actually starting design.

EVIDII can also be used to address the second question.
This issue arises when clients tend not to dare to articulate
what they think of proposed artifacts by professional
designers because they feel “incompetent” to do so. There
is an inevitable prejudice that “nonprofessional clients
should not argue against professional designers’ decisions.”
This often results in the lack of immediate feedback from
clients about intermediate designed artifacts, which would
have played a critical role for software designers in carrying
out subsequent design processes.

EVIDII serves as a communicative environment that
addresses this issue. There are no arguments concerning
“better” or worse around the associations made by the
design stakeholders. Instead, EVIDII reveals the existence
of differences of impressions among the stakeholders. This
is a type of feedback that designers can obtain from the
client through EVIDII. This will inform designers how to
proceed the rest of the design task by reflecting the client’s
intention more “correctly.”

CONCLUSION

This paper presented EVIDII, an environment that supports
cross-cultural communication in a variety of design
situations including software design. We discussed the
importance of communication in design activities and its
difficulty based on differences in “culture.” We introduced
the EVIDII system as an environment that helps overcome
this difficulty by focusing on the differences themselves.
Taking GUI design as an example, we elaborated this point
by showing example use situations. Our future work

includes the application of EVIDII for more design
situations as well as for other “cross-cultural” collaborative
situations, the analysis of those use situations, and the
refinement of the system based on those results.

ACKNOWLEDGMENT

We thank Shingo Takada at NAIST for valuable
discussions.

REFERENCE

1. Bodker, K., & Pedersen, J. (1991). Workplace Cultures:
Looking at Artifacts, Symbols and Practices. In J.
Greenbaum & M. Kyng (Eds.), Design at Work:
Cooperative Design of Computer Systems, 121-136.
Hillsdale, NJ: Lawrence Erlbaum Associates.

2. CMCM (1993) communications of the ACM, Special
issue: Participatory Design, June 1993.

3. Ehn, P. (1989). Work-Oriented Design of Computer
Artifacts. (Second ed.). Stockholm: Arbetslivscentrum.

4. Fischer, G., Nakakoji, K., & Ostwald, J. (1995).
Supporting the Evolution of Design Artifacts with
Representations of Context and Intent, Proceedings of
Symposium on Designing Interactive Systems (DIS'95),
7-15. New York: ACM.

5. Greenbaum, J., & Kyng, M. (Eds.). (1991). Design at
Work: Cooperative Design of Computer Systems.
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

6. Grudin, J. (1994). J.Grudin, CSCW: History and Focus,
IEEE computer, Vol. 27, No. 5, 1994, pp. -27

7. Krauss, R.M., & Fussel, S.R. (1991). Constructing
Shared Communicative Environments. In Resnick, L. B.,
Levine, J. M., & Teasley, S. D. (Eds.). Perspectives on
Socially Shared Cognition, 172-200. Washington, D.C.:
American Psychological Association.

8. Lakoff & Johnson (1980). Metaphors We Live By.
Chicago and London, The University of Chicago Press.

9. Nakakoji, K., Yamamoto, Y., Sugiyama, K., & Takada,
S. (1998). Finding the “Right” Image: Visualizing
Relationships among Persons, Images, and Impressions,
Proceedings of Designing Effective and Usable
Multimedia Systems (DEUMS), 91-102.

10. Rittel, H. (1984). Second-Generation Design Methods.
In N. Cross (Ed.), Developments in Design Methodology
317-327. New York: John Wiley & Sons.

11. Robinson, M., & Bannon, L. (1991). Questioning
Representations, Second European Conference on
Computer-Supported Cooperative Work. 219-233,
Kluwer Academic Publishers.

Appeared in Proceedings of the International Symposium on Future Software Technology (ISFST-99), Nanjing, China, Software Engineers
Associates, pp.113-118, October, 1999.

7

