
To appear in New Frontiers in Artificial Intelligence: JSAI-isAI 2010 Workshops, LNAI Series, Springer,
fall 2010.

Comparison of Coordination Communication and
Expertise Communication in Software Development:

Motives, Characteristics, and Needs

Kumiyo Nakakoji1, Yunwen Ye1, Yasuhiro Yamamoto2

1Key Technology Laboratory, SRA Inc., Japan
2 Precision and Intelligence Laboratories, Tokyo Institute of Technology, Japan

kumiyo@sra.co.jp, ye@sra.co.jp, yxy@acm.org

Abstract. The research question we pursue is how to go beyond existing
communication media to nurture communication in software development.
Nurturing communication in software development is not about increasing the
amount of communication but about increasing the quality of the
communication experience in the context of software development. Existing
studies have shown that different motives and needs are inherent when
developers communicate with one another. Identifying coordination
communication (c-comm for short) and expertise communication (e-comm) as
two distinct types of communication, we characterize the difference between
the two and discuss important factors to take into account in designing
mechanisms to support each type of communication.

Keywords: nurturing communication in software development, knowledge
collaboration, continuous coordination, unified interface for communication,
coordination communication, c-comm, expertise communication, e-comm,
design considerations

1 Introduction

Communication has been regarded as an important element in software development.
Increasingly more studies argue that socio-technical aspects of software development
need to be seriously taken into account in supporting software development. The
underlying premise is that peer developers are important knowledge resources in the
same way as other artifacts, such as source code, comments, design documents,
release notes, and bug reports, and that obtaining knowledge and information from
peers is quintessential in software development. Communication should not be
regarded as something to eschew, but instead as something to be nurtured [10].

The media currently used in such communication demonstrate a variety of means,
including face-to-face, telephone, personal email, mailing-list, Wiki, Internet Relay
Chat (IRC), video conferencing, or digital and physical artifacts (e.g., comments
inserted in source code or post-it notes pasted on a printed document). Awareness

mechanisms may also be regarded as a form of communication media in the sense
that one can obtain information about what other members of the projects are doing.
As communication media vary, styles of communication in software development
range from indirect to direct, from asynchronous to synchronous, and from intentional
to unintentional. It might be one to one, one to a designated some, or one to unknown
numbers of many.

Most of communication media that software developers currently use have been built
for general purposes (with few exceptions such as Wiki). The goal of our research is
to design innovative communication media to nurture communication for software
developers. Nurturing communication in software development is not about
increasing the amount of communication but about increasing the quality of the
communication experience in the context of software development. The primary task
of a software developer is to develop software, and not to communicate.
Communicative activities should be seamlessly integrated within the context of
software development activities. Communication is a means, not a goal.

In order to address the research question of how to go beyond existing
communication media to nurture communication in software development, we need to
better understand why software developer communicate with each other. By looking
into the motives of communicative activities of software developers, we have
identified two distinctive types of needs in such communications: coordination
communication and expertise communication [10].

In coordination communication, or c-comm for short, a developer tries to coordinate
his or her task with dependent peers in order to avoid and/or to solve emerging or
potential conflicts. In expertise communication, or e-comm for short, a developer
seeks information to solve his or her task at hand and asks peers for help. Note that by
expertise communication, we do not mean that a certain group of developers who
have general expertise thereby transfer their knowledge to novice developers through
communication. In contrast, our view is that expertise is always defined in terms of
some context, for instance, in terms of a particular method, a particular class, a
particular release, or a particular bug report at a particular point in time; and that
expertise is not something definable without context. In this view, each developer has
his or her own expertise in some aspects of the system and the project. Expertise
communication, therefore, may take place among all of the peer developers in every
direction [16].

Developers currently do not distinguish the two types of communication, which are
driven by their “information needs” and are carried out through common
communication channels. Coworkers were the most frequent source of information
for software developers, and the two types of information most frequently sought by
software developers from their coworkers were “What have my coworkers been
doing?” and “In what situations does this failure occur?” [7]. The former information
is sought primarily for the purpose of coordinating the work, and the latter is for the
purpose of getting some knowledge about the source code. Data on three well-known
open source projects have shown that text-based communication (mailing lists and

chat systems) is the developers’ primary source of acquiring both general knowledge
about other developers (who has the necessary expertise) and specific awareness (who
is working on their relevant parts of the system—to coordinate their tasks) [4].

It seems that developers often mix the two types of communication within a single
discourse session without paying any attention to distinguishing the two. For instance,
developer John first asks his colleague Mary over the cubicle wall whether she knows
why class C calls a method X instead of Y; then Mary answers that it is because Y is
designed to be thrown away, and that, by the way she has just been working on X and
checked-in the changes, so he had better check the latest version of X if he is working
on C. Thus, while the initial question posed by John is e-comm (i.e., he wanted to ask
Mary to give him the answer as to why C calls X instead of Y), the subsequent
conversation provided by Mary turns out to be c-comm (i.e., C that John is working
on depends on X that Mary is working on).

Why does it matter then to distinguish the two types of communication if developers
do not distinguish them? It matters because when it comes to design computational
mechanisms for supporting communication in software development, each type of
communication demands different types of design concerns.

In this paper, we first describes what fundamental differences exist between the two
types of communication in software development. We then explain how different
aspects need to be considered in designing computational support mechanisms. We
conclude with a list of research issues to be considered in developing such support.

2 Expertise Communication and Coordination Communication

A few features distinguish e-comm (expertise communication) from c-comm
(coordination communication).

We first illustrate c-comm. Suppose developer X initiates communication with
developer Y, which turns out to be c-comm. The purpose of the c-comm is to
coordinate tasks to resolve emerging conflicts or to avoid possible future conflicts
among the tasks in which X and Y are engaged. Developers X and Y are called
“socially dependent” [2] in the sense that they have to coordinate their tasks through
social interactions when it becomes necessary to resolve the perceived conflicts. X
and Y together form an “impact network” [3]. Coordination communication is a part
of impact management, which is “the work performed by software developers to
minimize the impact of one’s effort on others and at the same time, the impact of
others into one’s own effort” [3]. X may need to further involve those developers who
are part of the impact network.

In contrast, suppose developer A initiates communication with developer B, which
turns out to be e-comm. The purpose of this e-comm is for A to get some information
about A’s task at hand; A is asking B to help A by providing some information for

A’s particular task. As noted earlier, e-comm refers to the activities to seek
information that is essential to accomplish A’s software development activities, not
for the purpose of learning, but for the purpose of performing A’s job. If A does not
get satisfying information from B, A might need to ask other peers the same question.

Thus, while the relation between X and Y in the c-comm is reciprocal, that of A and
B in the e-comm is not. In c-comm, there is a symmetric or reciprocal relation
between those who initiate communication and those who are asked to communicate,
with roughly equal interests and benefits. In e-comm, in contrast, there is an
asymmetric and unidirectional relation between the one who asks a question and the
one who is asked to help. The benefit would primarily for the communication initiator,
and the cost (i.e., the additional effort) is primarily paid by those who are asked to
participate in the communication; that is, the cost of paying attention to the
information request; of stopping their own ongoing development task; of composing
an answer for the information-seeking developer, including collecting relevant
information when necessary; and of going back to the original task [15].

The role and value of the resulting communicative actions would also differ between
the two types of communication. When developers communicate with one another,
their conversations as well as produced artifacts (mail message contents or white
board drawings, for instance) can be stored (if appropriate media is used). Such
recorded communication can be useful if generated through e-comm. Email exchange
about a particular design of a class, for example, would serve as a valuable auxiliary
document for the class because another developer might find it useful to read when
using the class at a later time.

Archived communication generated through c-comm might be useful to inform other
developers within the same impact network for the time being. However, the impact
network constantly changes over time, and such information communicated over a
particular class may soon become obsolete. Moreover, c-comm without its temporal
context could be quite harmful when misused. A collection of the coordination
communication about a particular object over a long period of time may serve as the
object's development log but it would not be more than the existing developmental
records captured within current development environments.

Table 1 summarizes the differences between c-comm and e-comm.

The next section compares the different aspects of concern in designing mechanisms
for supporting each of the two types of communication.

3. Different Needs for Supporting the Two Types of
Communications

A thing is available at the bidding of the user--or could be--whereas a person
formally becomes a skill resource only when he consents to do so, and he can
also restrict time, place, and method as he chooses [6].

In talking about depending on other people, such as teachers, as knowledge resources,
Illich argued that their willingness to participate is essential in regarding them as
information resources. Using peers as potentially relevant information resources is
likely to increase the cognitive load for both those who initiate communication and
those who are asked to participate in the communication. Unlike a Help Desk, where
it is the job of those who are asked to answer [1], peer developers are there not to
communicate but to perform their own development tasks in a time-critical fashion.
They might be willing to communicate if they had more time and less stressful
situations; otherwise, they might not be willing unless they see an immediate need to
communicate.

Therefore, the asymmetric nature of the beneficiary and benefactors in e-comm
demands critical attention in designing communication support mechanisms. For an

Table 1: Comparing Coordination Communication (c-comm) and
Expertise Communication (e-comm)

 Coordination

Communication
 (c-comm)

Expertise
Communication
 (e-comm)

purpose to coordinate work to get information
needs conflict avoidance, conflict

resolution
problem solving

cost & benefit reciprocal between a
communication initiator and
the other communication
participants

asymmetric between a
communication initiator
and the other
communication
participants

expanding
participants

when others are part of the
impact network

when the initiator could
not get satisfactory
information

recorded
communication

useful for the time being
until the impact network
changes

becomes valuable for later
use

information-seeking developer, involving more participants in the communication
means having more potential information resources, implying a better chance of
obtaining the necessary information but at the cost of information overload; thus,
high-quality ranking and triaging mechanisms would become essential. For those who
are asked to participate in the communication and provide information, however,
responding to the request becomes yet another task [15].

On the one hand, when the relation between the communication initiator and the rest
of the communication participants is symmetrical and reciprocal, those who are asked
to participate in the communication would feel an equal importance of engaging in
the communication and would therefore participate. On the other hand, when the
relation is asymmetrical, where the initiator would be a beneficiary and the other
participants would be benefactors, mechanisms to persuade people to participate in
the communication are necessary.

Although there had been no explicit distinctions of the two types of communications
in software development, existing research currently demonstrates different emphases
on supporting each aspect of communication with regard to key concepts, tools, and
the primary functionality. Both approaches stress the importance of taking socio-
technical aspects into account, but in different contexts. Table 2 illustrates the two
distinctive approaches.

Supporting c-comm has been studied primarily in such research areas as coordinating
programmers and programming tasks. Supporting e-comm has been studied primarily
in such research areas as knowledge sharing and expert finding.

Table 2: Different Present Research Emphases on the Two Types of
Communication

 Coordination Communication

(c-comm)
Expertise Communication
(e-comm)

key concepts continuous coordination [11]
impact management [3]

developer as knowledge resources
[9]
communication channel [15]

primary
functionality

awareness
visualization

finding expertise
choosing experts
socially-aware communication
channel

tools Palantir [12]
Ariadne [2]

Expert Finder [13]
Expertise Browser [8]
STeP_IN_Java [15]

socio-
technical
aspects

social interaction needs are inferred
from the technical (structural)
dependencies of the tasks [5]

communication participants are
selected based on their technical
experiences on sought information
and previous social relations with
an information seeker [15]

Although they do not explicitly use the term “coordination communication,”
Redmiles et al. [11] present the continuous coordination paradigm for supporting
coordination activities in software development. The paradigm contains the following
four principles: (1) to have multiple perspectives on activities and information; (2) to
have nonobtrusive integration through synchronous messages or through the
representation of links between different sites and artifacts; (3) to combine socio-
technical factors by considering relations between artifacts and authorship so that
distributed developers can infer important context information; and (4) to integrate
formal configuration management and informal change notification via the use of
visualizations embedded in integrated software development environments [11].

This paradigm stresses the importance of integrating coordination activities within the
programming environment, and of making developers aware of the need for
communication and simultaneously minimizing the distraction of software developers
by using formal configuration management mechanisms and informal visual
notification and awareness techniques. Redmiles et al. (2007) focus on socio-technical
factors in the sense that peer-to-peer coordination communication needs are inferred
by analyzing structural (technical) dependencies of the system components on which
developers are working because they have to coordinate their tasks through social
interactions when the resolution of perceived conflicts becomes necessary [3], [14].

Nakakoji et al. [10] present nine design guidelines for expertise communication
support mechanisms. The guidelines state that expertise communication support
mechanisms should be integrated with other development activities, be personalized
and contextualized for the information-seeking developer, be minimized when other
types of information artifacts are available, take into account the balance between the
cost and benefit of an information-seeking developer and group productivity, consider
social and organizational relationships when selecting developers for communication,
minimize the interruption when approaching those who are selected for
communication, provide ways to make it easier for developers to ask for help; provide
ways to make it easier for developers to answer or not to answer the information
request, and be socially aware.

The guidelines presented by Nakakoji et al. [10] stress the importance of finding
communication participants who not only have necessary information, but are also
willing to provide the sought information in an appropriate way in a timely manner.
The guidelines also pay attention to the cost to those who are asked to engage in
expertise communication, and argue for the use of socially aware communication
channels. They focus on the socio-technical aspect in the sense that finding potential
communication participants takes into account not only technical skills of developers
but also their social relationship with the information-seeking developer.

Each approachs take socio-technical aspects into account differently. Research on c-
comm focuses on socio-technical congruence, where the structural similarities
between an organizational structure and software structure are primarily studied.
Research on e-comm focuses on a socio-technical space, where social relations

among developers are considered in finding communication partners who would be
willing to engage in the communication.

Such differences of the two types of communication necessitate fundamental
differences in designing communication support mechanisms, specifically,
• how to select participants for the communication,
• what timing to use to start communication,
• how to invite people to participate in the communication,
• which communication channel to use
• how to use the resulting communicative session (i.e., communication archives).

Table 3 lists factors that are common and those that are distinctive to the two types of
communication in software development.

Figure 1 illustrates how communication support mechanisms should be built in
support of software developers. On the one hand, there should be a unified interactive
framework with communication for the software developer that is integrated within a

Table 3: Comparison of Design Factors

 Coordination Communication Expertise Communication
in relation to the
development
environment

integrate with the development environment

disturbance minimize
when
communication
needs are identified

conflicts are detected or
possible conflicts are detected

a developer is in need of
information about the task at
hand

trade-off of not
communicating

potential risks of rework caused
by conflicts that might arise by
not coordinating

potential risks of slowing work
when appropriate information is
not provided to the information-
seeking developer

alternative means
to reduce
communication

to visualize the status of the
potential conflicts so that by
glancing at the visualized
information a developer may
not need to engage in explicit
communication

to guide the information-
seeking developer to relevant
artifacts such as source code
and documents so that a
developer may not need to
engage in explicit
communication

the use of the object
on which a
developer is
working

by looking at what objects a
developer presently works on in
order to infer the impact
network

by looking at what objects a
developer previously worked
on in order to infer the technical
expertise of the developer

the use of who is
initiating the
communication

by using the communication
initiator’s impact network in
selecting communication
participants

by using the communication
initiator’s social relations in
selecting communication
participants

helping one in
initiating
communication

mechanisms to switch to an
explicit communication mode
with the peers in the impact
network when urgent
communication needs are
detected

mechanisms to ask without
worrying about bothering peers

helping those who
are asked to
participate in the
communication

mechanisms to judge how
urgent and important the
conflict is

mechanisms to minimize
feeling guilty for not
responding to the request

awareness of
communication
channel

impact-aware so that developers
can easily judge and
communicate how much impact
the emerging conflict might
have and how to avoid and
solve the conflict.

socially aware so that
developers use the right channel
instead of the channel that is
easier to use (whom to ask,
through which media)

development environment. Developers should not need to explicitly choose which
communication type in which they would like to be engaging. Communication with
peer developers should be supported as another type of information usage during
software development, and needs to be integrated with a program- and document-
authoring and browsing environment. On the other hand, how the communication is
designed and structured needs to be tuned to each of the two types of communication.
What is needed is to take the above differences seriously into account and design the
communication support mechanisms accordingly.

Figure 1: An Architecture of Communication Support Mechanisms
that Takes into Account Two Types of Communication

4. Concluding Remarks

Nurturing communication in software development is not about increasing the amount
of communication but about increasing the quality of the communication experience
in the context of software development. Although having been recognized merely as
communicative acts, different motives and needs are inherent when developers
communicate with one another. Different computational mechanisms are necessary to
realize successful communication. This paper presents our initial attempt to list
different aspects necessary to take into account in designing mechanisms to support
coordination communication and expertise communication. As opposed to general
communication needs, there are either coordination communication needs or expertise
communication needs. A real challenge would be to design a developer-centered
unified interactive framework that seamlessly integrates the two.

References

1. Ackerman M S, Malone T W: Answer Garden: a tool for growing organizational memory.
Proceedings of the ACM Conference on Office Information Systems. Cambridge, MA, pp
31--39 (1990)

2. [de Souza et al. 2007] de Souza CRB, Quirk S, Trainer E, Redmiles D: Supporting
collaborative software development through the visualization of socio-technical
dependencies. Proceedings of GROUP'07, pp 147–156 (2007)

3. [de Souza & Redmiles 2008] de Souza CRB, Redmiles D: An empirical study of software
developers management of dependencies and changes. Proceedings of International
Conference on Software Engineering (ICSE'08), pp 241--250 (2008)

4. [Gutwin et al. 2004] Gutwin C, Penner R, Schneider, K.: Group awareness in distributed
software development, Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW2004), pp 72--81 (2004)

5. [Herbsleb & Grinter 1999] Herbsleb, J, Grinter R E: Splitting the organization and
integrating the code: Conway's Law revisited. Proceedings of International Conference on
Software Engineering (ICSE99), pp 85--95 (1999)

6. [Illich 1971] Illich, I., Deschooling Society. Harper and Row (1971)
7. [Ko et al. 2007] Ko AJ, DeLine R, Venolia G: Information needs in collocated software

development teams. Proceedings of International Conference on Software Engineering
(ICSE’07), pp 344--353 (2007)

8. [Mockus & Herbsleb 2002] Mockus A, Herbsleb J: Expertise Browser: a quantitative
approach to identifying expertise. Proceedings of International Conference on Software
Engineering (ICSE'02), pp 503--512 (2002)

9. [Nakakoji 2006] Nakakoji K: Supporting software development as collective creative
knowledge work. Proceedings of International Workshop on Knowledge Collaboration in
Software Development (KCSD2006), Tokyo, pp 1--8 (2006)

10. [Nakakoji et al. 2010] Nakakoji K, Ye Y, and Yamamoto Y: Supporting expertise
communication in developer-centered collaborative software development environments.
In: Finkelstein A, van der Hoek A, Mistrik I, Whitehead J (eds) Collaborative Software
Engineering, Chapter 11, Springer-Verlag, January (2010)

11. [Redmiles et al. 2007] Redmiles D, van der Hoek A, Al-Ani B, Hildenbrand T, Quirk S,
Sarma A, Filho RSS, de Souza C, Trainer E: Continuous coordination: a new paradigm to
support globally distributed software development projects. Wirtschaftsinformatik J, 49:
S28--S38 (2007)

12. [Sarma et al. 2003] Sarma A, Noroozi Z, van der Hoek A: Palantir: raising awareness
among configuration management workspaces. Proceedings of International Conference on
Software Engineering (ICSE'03), pp 444--454 (2003)

13. [Vivacqua & Lieberman 2000] Vivacqua A, Lieberman H: Agents to assist in finding help.
Proceedings of Human Factors in Computing Systems (CHI'00), pp 65--72 (2000)

14. [Wagstrom & Herbsleb 2006] Wagstrom P, Herbsleb J: Dependency forecasting,
Communications of ACM 49(10): 55--56 (2006)

15. [Ye et al. 2007] Ye Y, Yamamoto Y, Nakakoji K: A socio-technical framework for
supporting programmers. Proceedings of ESEC/FSE'07, pp 351--360 (2007)

16. [Ye et al. 2008] Ye Y, Yamamoto Y, Nakakoji K: Expanding the knowing capability of
software developers through knowledge collaboration, International Journal of Technology,
Policy and Management (IJTPM), Special Issue on Human Aspects of Information
Technology Development, Interscience Publishers, 8(1): 41-58 (2008)

