
Appeared in the Proceedings of 2007 International Conference on Principles and Practices of Programming in Java (PPPJ2007), ACM
Press, Lisbon, Portugal, pp. 41-50, September, 2007.

1

Searching the Library and Asking the Peers:
Learning to Use Java APIs on Demand

Yunwen Ye1,3 Yasuhiro Yamamoto2 Kumiyo Nakakoji2,3 Yoshiyuki Nishinaka3 Mitsuhiro Asada3
1L3D Center

Department of Computer Science
University of Colorado, Boulder, USA

+1-303-492-3547

2KID Lab
RCAST

University of Tokyo, Japan
+81-3-5452-5286

3SRA Key Technology Lab
3-12 Yotsuya, Shinjuku

Tokyo, Japan
+81-3-3357-9011

yunwen@colorado.edu {yxy, kumiyo}@kid.rcast.u-tokyo.ac.jp {nisinaka, m-asada}@sra.co.jp

ABSTRACT
The existence of large API libraries contributes significantly to
the programming productivity and quality of Java programmers.
The vast number of available library APIs, however, presents a
learning challenge for Java programmers. Most Java programmers
do not know all the APIs. Whenever their programming task
requires API methods they do not yet know, they have to be able
to find what they need and learn how to use them on demand. This
paper describes a tool called STeP_IN_Java (a Socio-Technical
Platform for In situ Networking of Java programmers) that helps
Java programmers find APIs, and learn from both examples and
experts how to use them on demand. STeP_IN_Java features a
sophisticated yet easy-to-use search interface that enables
programmers to conduct a personalized search and to
progressively refine their search by limiting search scopes.
Example programs are provided and embedded to assist
programmers in using APIs. Furthermore, if a programmer still
has questions about a particular API method, he or she can ask
peer programmers. The STeP_IN_Java system automatically
routes the question to a group of experts who are chosen based on
two criteria: they have high expertise on the particular API
method and they have a good social relationship with the
programmer who is requesting the information.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques –
Object-oriented programming. D.2.2 [Software Engineering]:
Design Tools and Techniques – Computer-aided software
engineering, Software libraries. H.5.3 [Information Systems]:
Group and Organization Interfaces – Computer-supported
cooperative work

General Terms
Design, Economics, Human Factors, Languages, Theory

Keywords

Java API, software reuse, expertise location, peer support

1. INTRODUCTION
The existence of large API libraries contributes significantly to
the programming productivity and quality of Java programmers.
The current Standard Edition of Java 1.6.0 (i.e., Java SE 6) has
3,777 classes and interfaces in its API library. As shown in Figure
1, the standard API library of Java SDK has grown nearly linearly
over the past several years at the average rate of 356 classes and
interfaces per year. In addition to the standard Java SDK APIs,
many third-party API libraries from both proprietary companies
and Open Source Software communities are being developed and
becoming available for Java programmers.

Figure 1: The growth of Java SDK API classes and interfaces
Given the sheer number of available APIs, few programmers, if
any, know all of them. Whenever their programming tasks require
API methods that they don’t yet know, they have to be able to
learn to use the API methods on demand. To learn to use a new
API method on demand during a programming practice requires
that a programmer quickly find the one that he or she needs,
understand the specifics that are related to the current task, and
integrate the API into his or her own programs.

Learning to use APIs on demand is different from other forms of
learning in which the aim is to increase the general knowledge to
prepare for potential future use. When the need for learning to use
an unknown API method arises in a programming practice, the
primary concern of the programmer is use, not the increase of
general knowledge, because he or she has a pressing task to be
accomplished [8]. Therefore, the process of learning to use a
specific API on demand is highly personalized to the specific
needs and existing knowledge of the programmer, and is tightly
contextualized in the task and environment of the programmer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2007, September 5–7, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-672-1/07/0009…$5.00.

2

The standard Javadoc documentation system is not very effective
in supporting learning APIs on demand. First, its browsing system,
based on the hierarchical structure of packages and classes, is not
suited for finding unknown APIs. When a programmer is looking
for an unknown API method during the work practices, he or she
starts with a functionality requirement, not necessarily knowing
what package or class might include the needed API method.
Second, the documents are often insufficient for understanding the
nitty-gritty details of the API methods. Many API methods are
“inadequately documented—often by technical writers who aren’t
programmers and don’t think like programmers” [15].

To complement the insufficiency of documents, programmers
often engage in searching existing programs that use the desired
API method to learn to use it. Finding a good, easy-to-understand
example that illustrates the particular concerns that the
programmer has is a time-consuming and tedious process [6].

In other cases, a programmer may enlist the help of peer
programmers to ask specific questions about how to use the API
method appropriately. This requires that the programmer know
who has expertise on the particular API method [2]. Given the
huge number of API methods, finding out who knows which API
method is not an easy task. Furthermore, finding peer experts does
not necessarily lead to acquiring their expertise. As knowledge
resources, peer experts are different from other resources that are
“things.” “A thing is available at the bidding of the user—or could
be—whereas a person formally becomes a skill resource only
when he consents to do so, and he can also restrict time, place,
and method as he chooses” [7]. Peer programmers, who are often
constrained by their own programming tasks, must also be willing
to share their precious expertise and time with the programmer
who is asking for help.

This paper presents the STeP_IN_Java system that we have
developed to provide integrated, personalized, and contextualized

support for Java programmers to learn to use API methods on
demand. It features a sophisticated yet easy-to-use search
interface that enables programmers to conduct personalized
searches based on functionality descriptions. Example programs
are provided and embedded in documents to assist programmers
in understanding how to use APIs in context. Furthermore, a
programmer can post questions to an automatically selected group
of peer experts who have expertise on the particular API method
in question and are mostly likely willing to offer assistance in a
timely manner. The system was designed and developed by
instantiating the socio-technical framework described by Ye et al.
[23].

2. SYSTEM OVERVIEW
The STeP_IN_Java system (Figure 2) is a web-based system, and
users interact with it through web browsers. The system consists
of four major subsystems. At the center is the STeP_IN_Java
Repository subsystem, which stores the search index and
documents of API libraries; examples; discussion archives; the
technical profiles of programmers, which model the expertise they
have about the indexed API libraries; and the social profiles of
programmers, which model the social context by representing
their relationships among peer programmers (Section 3). The
Profile Management subsystem is used by programmers to
initialize and to update their social and technical profiles. The
Search Engine subsystem provides a personalized search for API
methods, examples, and archived discussions. The Peer Support
subsystem identifies and chooses experts to form an ephemeral
mailing list through which a programmer can obtain help from
peers.

To use the system, a Java programmer first has to register as a
STeP_IN_Java user. After registration, the programmer needs to
download a profiling client program (Profiler) and use that to
create and upload his or her initial technical profile and social

Figure 2: System overview

3

profile (details are provided in Sections 3.2 and 3.3, respectively).

A user who needs to learn to use APIs on demand interacts with
STeP_IN_Java as follows after he or she has logged into the
system.

1. The user types a natural language description of the
functionality of the API method that he or she is looking for in
the search interface. If too many search results are returned and
the user cannot quickly find what is needed, he or she can use
the search-by-refinement mechanism to personalize the search.

2. The user clicks on one of the returned results to bring up an
enhanced Java document page. Each method in the Java
document is enhanced with four embedded links: Example,
Discussion Archive, Ask Expert, and Upload Example (see
Figure 8 in Section 4.3 for an illustration).

3. By clicking on the Example link, the user opens an example
page that shows code fragments that illustrate the use of the
API method.

4. By clicking on the Discussion Archive link, which appears both
in the Java document page and the example page, the user
opens the page that displays archived past discussions on this
particular method.

5. By clicking on the Ask Expert link, which appears in the Java
document page, the example page, and the discussion archive
page, the user gets a question composition window. He or she
can then type a question about the method and submit it.

6. After the question is submitted, the system automatically
selects a group of peer programmers whose technical profiles
indicate they have expertise on the API method in question, and
whose social profiles indicate that they have good social ties
with the asker. The asker and the selected group of peer
programmers (called helpers) become members of a
dynamically created learning community (called DynC for
short), and an ephemeral mailing list that consists of the DynC
members is created.

7. Members of the DynC will receive the question posted by the
asker through the ephemeral mailing list. The replies from the
helpers are also sent to the same ephemeral mailing list.

8. If the asker deems that there is no more to discuss about the
method, he or she should terminate the DynC by logging into
STeP_IN_Java. Upon terminating the DynC, the asker is also
required to evaluate the DynC as being “helpful” or “not
helpful.” The ephemeral mailing list associated with the DynC
is also automatically terminated.

Questions and answers exchanged in the ephemeral mailing list
are archived in the STeP_IN repository and linked to the API
method around which the discussion is centered.

3. REPOSITORY AND PROFILE
MANAGEMENT

The repository of the STeP_IN_Java system contains the search
index for Java API methods, documents of each method,
examples of method usage, accumulated discussions, and
technical profiles and social profiles of programmers.

3.1 Indexes and Documents
STeP_IN_Java treats each Java API method as an indexing and
search unit. It uses the probability-based free-text information
retrieval technique [16] to index each API method based on its
name and text-based javadoc description [22].

From the source code of the API libraries, STeP_IN_Java uses the
Doclet API to generate the documents and search indexes to
populate its repository.

3.2 Technical Profiles
In the STeP_IN_Java system, each user has a technical profile to
represent his or her existing expertise about the indexed API
methods. The technical profile of a programmer includes four sets
of API methods:

(1) The set of Used Methods includes those methods that the
programmer has used in his or her own programs.

(2) The set of Confirmed Known Methods includes those
methods for which the programmer has demonstrated
expertise through replying to questions on these methods
asked by other programmers.

(3) The set of Claimed Known Methods includes those methods
that the programmer claims he or she knows.

(4) The set of Not Interested Methods includes those methods
about which the programmer does not want to share
expertise with other peers.

The sets of (1) and (2) are objective approximations of the
expertise that a programmer has and are automatically maintained
and updated by the system. The sets of (3) and (4) are subjective
choices that the programmer has made by using the Profile
Management subsystem.

Figure 3: Technical profile initialization

A programmer needs to initialize his or her technical profile by
using the Profiler when registering into the system. As shown in
Figure 3, the programmer needs to specify in the Profiler the
CLASSPATH to the Java programs that he or she has written so far.
The Profiler parses the programs and extracts all the method
references. The extracted references of the methods that are not
indexed in the STeP_IN_Java repository are discarded, and the
remaining references of the indexed methods are displayed, with
the total number of references of each method in all programs.
The method names and reference numbers are then uploaded to
the STeP_IN_Java system and become elements in the Used
Methods of the programmer’s technical profile. Programmers can
uncheck the check field if they do not want a method to be
included in their initial technical profiles as a known method.

Another source for initializing the technical profile of a
programmer is his or her mailbox because programmers routinely

4

use emails to communicate with peer programmers. The Profiler
is therefore also able to extract what programmers know about the
indexed API methods by analyzing their mailboxes. Because mail
messages are text, we cannot use Java parsers to extract method
names and their reference numbers. Instead, the STeP_IN_Java
Profiler uses the following heuristics to extract the known
methods:

Step 1: Remove quoted parts in an email message by
recognizing the conventions used by major mail programs.
Step 2: Split the message into words along white spaces (space,
tab, and carriage return).
Step 3: For each word, determine if it is a part of Java code
fragments based on whether it contains, or is followed by such
telltale characters as “()=.+-”.

Step 3.1: If the word is determined to be part of a possible
Java code fragment, check whether it agrees with Java
method call syntax.
Step 3.2: If the word agrees with the Java method call syntax,
extract the method name, and class and package names if
they are available.
Step 3.3: Look up the method name (with class name and
package name, if available) in the repository of indexed
methods. If the method name is unique, it is regarded as one
count of usage of the method by the programmer. If the
method name is not unique (especially when class name and
package name are not available), it is discarded.

The extracted numbers of usage of the index methods are then
added to the Used Methods of the programmer’s technical profile.

Figure 4: Technical profile management
Most of the technical profile of a programmer is therefore
automatically created and maintained by the system. However, a
programmer can, if desired, update his or her technical profile
through the Profile Management subsystem (Figure 4) by
checking the Expert button or the No Knowledge button at any
time. If the programmer checks the Expert button on an API
method, the method is added to the Known Methods set of his or
her technical profile. If the programmer checks the No Knowledge
button, the method is added to the Not Interested Methods set of
his or her technical profile. When an API method is added to the
Not Interested Methods set of a programmer’s technical profile,
no matter whether the programmer actually knows the method, he
or she will not receive any questions about the method. This
mechanism grants programmers the control to exclude themselves
from answering questions on selected methods for whatever
reasons. For example, a programmer might not want to answer
questions on API methods that he or she thinks are too low level
to match his or her expertise, wanting to focus on answering more

interesting and challenging questions. Or, a programmer might get
bored of answering questions about the same API method again
and again.

3.3 Social Profiles
A programmer’s social profile represents his or her existing social
relationships with other STeP_IN_Java users that resulted from
their previous social interactions. A social profile defines four
types of social relationships: exclude, include, help, and email.
The first two are claimed relationships that are explicitly specified
by the programmer, and the latter two are factual relationships
that record the history of interactions with other programmers. All
four kinds of relationships are unidirectional.
• exclude<P, Q>: This means that P does not want to answer

any questions asked by Q. In other words, P does not want to
participate in any DynC initiated by Q on any API method,
regardless of whether P has expertise in it. This choice is
known only to P; no one else, including Q, knows it. Because
relationships are unidirectional, exclude<P, Q> does not mean
exclude<Q, P> because the perception of social relationships
is subjective and not necessary mutually equal.

• include<P, Q>: This means that P is always willing to help Q
if P has any level of expertise on any API method that Q wants
to learn. Similarly, this relationship can be seen and edited only
by P, and include<P, Q> does not mean include<Q, P>. It
could even be possible that both include<P, Q> and
exclude<Q, P> exist at the same time, meaning that P is
always willing to help Q, while Q does not want to share
expertise with P. However, exclude<P, Q> and include<P, Q>
are mutually exclusive.

• help<P, Q>: This represents the number of times that P has
helped Q within the STeP_IN_Java system. If P replies to the
question posted by Q in the DynC initiated by Q,
STeP_IN_Java adds one count to help<P, Q>.

• email<P, Q>: This represents the number of emails that P has
sent to Q outside of the STeP_IN_Java system.

The email relationship constitutes the initial value of the social
profile, and is added to his or her social profile when a user
registers in the STeP_IN_Java system with Profiler. After the user
provides the path to his or her mailbox, the STeP_IN_Java
Profiler extracts the email addresses of those who have sent
emails to him or her and the number of the emails sent, and
uploads the senders and the number of emails (but no other
information) to the STeP_IN_Java system. Similarly, users can
uncheck the item if they do not want to include in their social
profiles any email exchange information with a particular person.

Users can also update their social profiles through the Profile
Management subsystem. A social profile is visible and editable
only by the user. Figure 5 shows the interface for updating the
social profile of user lu1286. The second column, Participation in
his/her DynC, shows how many times lu1286 has helped a
specific programmer (whose name is shown in the first column)
by participating in DynCs initiated by that programmer. For
example, row 1 shows that lu1286 has helped lu1259 once, and
this is modeled in help<lu1286, lu1259>. The third column,
Participation in My DynC, shows how many times a specific
programmer has tried to help by participating in the DynCs
initiated by lu1286. For example, as shown in row 1, lu1259 has
never helped lu1286, and this is modeled in help<lu1259,
lu1286>. Both above numbers as well as the numbers of email

5

exchanges are facts that cannot be changed. However, lu1286 can
specify whether he or she is willing to continue providing help to
programmer lu1259 in the future by choosing one of the three
options in the last column, Future participation in his/her DynC.
For example, in Figure 5, lu1286 chooses always in the row for
lu1259, and include<lu1286, lu1259> is added to lu1286’s social
profile. Note that lu1286 choosing never in the row for lu1261,
adding exclude<lu1286, lu1261> to lu1286’s social profile.

Figure 5: Social profile management

4. SEARCH ENGINE
User queries are written in natural language. Retrieval results are
returned based on the similarity between user queries and the
documents of each method in the repository (Figure 6). Based on
the assumption that terms are distributed differently in relevant
and irrelevant documents, the probability-based information
retrieval technique that is adopted by the STeP_IN_Java system
computes the similarity between a query and a document by
assigning appropriate weights to terms in the document collection,
and returns a rank-ordered list of indexed documents that best
match the query [16, 21].

Figure 6 Search interface

4.1 Personalized Search
STeP_IN_Java supports personalized searches. As mentioned in
Section 3, users’ technical profiles represent what methods they
have known by analyzing the Java programs they have written and

emails they have sent. In STeP_IN_Java, users can choose to limit
their search range to all the methods that they have used, or to
limit their search range to all the methods that they have never
used. The former mechanism is meant to support the search for
those methods that users vaguely know and have used but cannot
remember the details; the latter mechanism is meant to support the
search for completely unknown methods.

4.2 Iterative Search by Refinement
Search-by-refinement is also supported. Information search is
seldom a one-shot action, due to the difficulty of formulating a
perfect query when the search object is not clearly known and
well-defined in advance [12]. Information retrieval systems can, at
best, retrieve information that matches the queries submitted by a
user, and the retrieved information may not necessarily match the
user’s real intentions, which may not be fully articulated in the
query. Search-by-refinement [20] is a process that allows users to
incrementally improve their queries after they have examined the
initial retrieval results.

Java API libraries are separated into packages and classes. For
most programming tasks, only a small portion of the packages and
classes are needed. If the search is limited to those packages or
classes that are relevant to the current task, search efficiency will
be greatly improved. In the search results returned by the search
engine of STeP_IN_Java, each method name is accompanied by
the full class name to which the method belongs. As the user
moves the mouse cursor over the package name, or any
subpackage name, or the class name, the name will be
highlighted; if the user then clicks the mouse, a small window will
appear below the full class name (Figure 7). The users can click
either the +Scope or –Filter option.

Figure 7: Query-by-reformulation in context
If +Scope is clicked, the search results will be limited to the
specified package or class. For example, in Figure 7, only
methods from the packages that start with org.apache.xml will be
returned. Conversely, if –Filter is clicked, all methods from the
packages that start with org.apache.xml will be removed from the
search results. For the same search task of looking for the API of
executing an external command as shown in Figure 6, if the
programmer formulates his or her query as “external command”
instead of “execute external command” as shown in Figure 6, the
exec method that matches the real intention of the programmer
will not be returned in the first page of the retrieval results. The
first several methods are all from org.apache.xml, as shown in
Figure 7. By examining the results, the programmer can soon
realize that what he or she is looking for probably won’t be in
org.apache.xml. The programmer can then choose to filter this
package out, and the exec method will pop up to the first page of
the retrieval results.
Similar search range specification can be included in the initial
search if users write org.apache.xml in the Filter field of the
search interface (Figure 6). However, for most programmers who

6

are not very familiar with the library, it is much each easier to
specify the range after they have seen the initial search results.

4.3 Enhanced Java API Documents
If the programmer decides to further examine an API method
from the retrieval results, he or she can click the method name.
This will bring up the documents for that API method.

As mentioned before, STeP_IN_Java extends the standard Java
API documents with four added buttons: Example, Discussion
Archive, Ask Expert, and Upload Example (Figure 8).

If the document does not provide enough information for the
programmer to learn to use the API, he or she can click the
Example button to take a look at code fragments that illustrate the
use of the API method (Figure 9).

Further information can be found by clicking the Discussion
Archive button (from either Figure 8 or Figure 9), which displays
archived previous discussions about the API method (Figure 10).

Figure 8: Extended Java API documents

Figure 9: Example code

Figure 10: Discussion archive

5. ASKING EXPERTS
When reading the document, examples, and discussion archive is
not enough for the programmer to understand how to use the API
method, he or she can seek help from peer programmers. Clicking
the Ask Expert button—which appears in the document page
(Figure 8), the example page (Figure 9) and the discussion archive
page (Figure 10)—opens a window for posting a question (Figure
11). For the sake of brevity, we will use Bob to denote the
programmer who is currently asking a question, and mtd to denote
the API method that is being asked about.

Figure 11: Asking a question

As soon as Bob submits the question, the STeP_IN_Java system
automatically sends the question to a group of selected peer
experts. The group is a dynamically created learning community
initiated by Bob on the topic of method mtd and this group,
denoted as DynC(Bob, mtd), has members determined through the
following steps.

5.1 Identifying Expert Peers
The first step identifies those peer programmers who have
expertise on mtd by examining each peer programmer’s technical
profile. If the Used Methods, Claimed Known Methods, or
Confirmed Known Methods in a peer programmer’s technical
profile includes mtd, the peer programmer is identified as an
expert, and is added to the List of Candidate Experts.

5.2 Removing Unwilling Expert Peers
Having expertise is only a necessary condition for expertise
sharing. The programmers who hold the expertise must also be
willing to share their expertise with other programmers. If the
programmer is unwilling to share his or her expertise, sending the
question to the programmer will not help the asker obtain the
needed learning help. Additionally, a programmer who is
unwilling to help but still receives the question will be
unnecessarily annoyed and interrupted from his or her own
programming task.

To avoid this unnecessary annoyance and interruption incurred on
unwilling programmers, the STeP_IN_Java system removes two
types of peer experts who have explicitly indicated unwillingness.

For each programmer in the List of Candidate Experts, if the Not
Interested Methods of the programmer’s technical profile includes
mtd, the programmer is removed from the List of Candidate
Experts because the programmer has already explicitly declared
that he or she is not interested in answering questions about mtd.
The second reason that a peer programmer might not be willing to
help is a factor of individual relationships. An arduous
relationship between the source of expertise and the recipient of
expertise is a well-recognized impediment to expertise sharing [3].

7

STeP_IN_Java therefore removes from the List of Candidate
Experts those peer programmers who have explicitly indicated
their unwillingness to help the asker. In other words, for each
member K in the List of Candidate Experts, if K has explicitly
specified that he or she does not want to participate in helping Bob
(i.e., exclude<K, Bob> exists), K is removed from the List of
Candidate Experts for Bob.

5.3 Selecting Expert Peers Mostly Likely to
Help

All the remaining members of the List of Candidate Experts don’t
have explicit personal preferences of not answering questions on
mtd, or of not helping Bob. However, this does not mean that all
of them will be equally willing to help Bob. Empirical studies
have shown that existing social ties improve the motivation of the
helper and the quality of the helping act [3]. To further improve
the effectiveness of obtaining expertise from peer programmers,
the STeP_IN_Java system conducts another selection round by
considering the social ties that exist between the candidate experts
and Bob, and it selects peer experts who are most likely willing to
help Bob.

First, the system considers whether a candidate expert has
explicitly indicated his or her willingness to help Bob. For each
member K in the remaining List of Candidate Experts, if
include<K, Bob> exists, which means that K has declared he or
she will participate in DynCs initiated by Bob, K is then selected
as a member of DynC(Bob, mtd).
Second, the system selects those expert candidates who have been
helped by Bob before. In other words, for each member K in the
remaining List of Candidate Experts, if help<Bob, K> exists,
which means that Bob has helped K before, K is then selected as a
member of DynC(Bob, mtd). Because K has been the recipient of
the help provided by Bob in the past, it is highly likely that K is
willing to reciprocate the favor this time.

Third, the system selects those expert candidates who have
received more help in general. For each member K in the
remaining List of Candidate Experts, based on the help relation in
K’s social profile, if the number of helps that K has received from
others is greater than the number of helps that K has offered to
others, namely,

∑ help<P, K> > ∑ help<K, P>
where P is any registered member of STeP_IN_Java,

K is then selected as a member of DynC(Bob, mtd). Although K
and Bob do not have a direct helping relationship, due to the
social norm of generalized reciprocity that regulates social
interactions among group members, K has social obligations to
return favors that he or she has received from the group in the past
by offering help to other members [14].
The above selection rules rely on the captured help relationships
that have resulted from the interactions among programmers
taking place inside the STeP_IN_Java system. However, when the
system is initially deployed, or when a new member registers to
the system, there will not be enough historical data to make the
above selections. As a way of jump-starting, if the above rules fail
to select any peer experts, the STeP_IN_Java system selects peer
experts by utilizing existing social ties that are reflected in the
history of email exchange. Namely, for each member K in the List
of Candidate Experts, if email<K, Bob> exists, which means that
K has sent emails to Bob, then K is selected as a member of
DynC(Bob, mtd). The fact that K has sent emails to Bob indicates

the possibility that K knows Bob to a certain degree, which further
implies that K might be willing to help Bob.

5.4 Creating an Ephemeral Mailing List
The finally selected experts become the members of DynC(Bob,
mtd), and an ephemeral mailing list that consists of the selected
members is dynamically created. Through the ephemeral mailing
list, the DynC(Bob, mtd) members receive the question posted by
Bob on the API method mtd.

All the replies from DynC(Bob, mtd) members are also sent to the
ephemeral mailing list associated with DynC(Bob, mtd). When
Bob feels the discussion is sufficient, he should close DynC(Bob,
mtd) after evaluating the DynC as “helpful” or “not helpful.” Or,
if no message is exchanged for a predetermined period of time,
DynC(Bob, mtd) will automatically be closed by the system. Once
a DynC is closed, its associated ephemeral mail list is
discontinued as well.
All the discussions that took place in the ephemeral mailing list
are archived in the STeP_IN_Java system and are linked to the
API method. Other programmers are still able to reap the benefits
of expertise sharing by browsing the discussion archive (Figure
10), even though they were not directly involved in the original
discussion.

5.5 Updating Profiles
As programmers ask and answer questions in the STeP_IN_Java
system, their social relationships with other programmers change,
and such changes are captured and reflected in the updating of
their technical and social profiles.

If asker Bob evaluates DynC(Bob, mtd) that he initiated as
“helpful,” any member K of DynC(Bob, mtd) who has sent an
email to DynC(Bob, mtd) is regarded as a known expert on
method mtd. Namely, the Known Methods of K’s technical profile
will now include mtd. At the same time, the system records the
fact that K has helped Bob once, and increases the value of
help<K, Bob> by one.

In addition to the automatic update of profiles, the experts who
receive the request for help are also offered an opportunity to
change personal preferences in their profiles. The question email
that each member of DynC(Bob, mtd) receives is embedded with
two personalized links to his or her profile management interface.
One link takes the member to his or her technical profile
management interface (Figure 4) with the method mtd shown. By
clicking the I don’t know button at the row for mtd, the member
will no longer receive any questions that are related to mtd.

The other link takes the member to his or her social profile
management interface (Figure 5) with the name of Bob shown. By
clicking the button never for the row of Bob, the expert will no
longer receive any questions that are asked by Bob.

The two embedded links are meant to ease the burden of
maintaining updated individual profiles. A programmer who feels
that he or she is involved in an unwanted DynC can react
immediately and take action by using the embedded links. This
removes the need for the tedious and time-consuming initial setup
of individual profiles. It also makes it easier for programmers to
make decisions by reacting to a concrete situation instead of
thinking abstractly when they are asked to maintain their profiles
separately.

8

6. SYSTEM EVALUATION
Evaluating a system such as STeP_IN_Java is very challenging
because it deals with human preferences and social perceptions. A
longitudinal study of its use in real development environments is
required to thoroughly evaluate the system. We do not yet have
real usage data to report on the overall effectiveness of the system.
However, we have conducted preliminary evaluations of the key
techniques: the API method search mechanism and the automatic
identification of expert programmers on a particular API method.

6.1 Evaluating the Search Mechanism
Information retrieval systems are conventionally evaluated by
recall and precision [18]. Recall is the proportion of relevant
material actually retrieved in answer to a search query, and
precision is the proportion of retrieved material that is actually
relevant. Figure 12 shows the recall-precision curve for the results
of executing 19 queries. For more details about the evaluation of
the search mechanism, please see the evaluation of the
CodeBroker system [22], whose search engine is reused in the
STeP_IN_Java system.

Figure 12: Precision-recall curve

6.2 Evaluating the Expert Finding and
Selecting Mechanism

We have conducted a simulation study to investigate how
STeP_IN_Java is able to identify and select the “right” experts to
receive questions asked by a Java programmer.

6.2.1 Data Set
The data we used for the evaluation study are the Java API library
of the Apache Lucene system (http://lucene.apache.org/) and the
emails posted to the java-user@lucene.apache.org mailing list,
which is used by programmers who use the Lucene Java API
library.
The messages sent between 2001 and 2005 to the mailing list
were used as the base data. We then simulated how DynCs would
be formed for the questions posted during 2006, and compared the
results with the actual conversation threads carried out in the
mailing list in 2006.

A total of 2,291 members posted messages to the mailing list.
During the period between 2001 and 2005, which we used as the
base data, there were 17,942 messages with 4,616 threads
identified.

6.2.2 Procedure
The simulation study was conducted as follows.

(1) We indexed the Lucene Java API library and populated the
STeP_IN_Java repository with indexes and enhanced Java
documents from its source code.

(2) We wrote a Python script to process the mailing list archive
and identify 2,291 members who sent emails to the mailing list.
Individual members who use different email addresses were
identified through a set of heuristics and were visually verified
before merging them into one identity. The 2,291 members
were then registered as STeP_IN_Java users, with pseudo
usernames such as U0001, U0002, ..., U2291.

(3) We extracted all the emails that each member had sent to the
mailing list to construct a mailbox for him or her. From the
constructed mailbox, we created each member’s technical
profile.

(4) We divided the mailing list archive into conversation threads.
For each thread, we identified the member (e.g., A) who sent
the first message to initiate the discussion. We then identified
those members who replied to the thread (e.g., B, C, D) and
presumed the existence of help relationships: help<B, A>,
help<C, A> and help<D, A>.

(5) We then simulated communications that took place in 2006.
For an actual thread that started during 2006, if the thread was
asking about a certain Lucene Java API method, we logged
into STeP_IN_Java as the initiator of the thread, and clicked
the Ask Expert button from the method’s document to ask the
same question. STeP_IN_Java then created a DynC for the
thread-initiator about the API method. The group of members
that was selected by the STeP_IN_Java system to receive the
question was compared with the set of users who actually
replied to the thread in the actual mailing list.

6.2.3 Results
Table 1 shows the results of the experiment. We listed the first 20
API methods about which questions were posted in the mailing
list in 2006. Table 1 shows the subject of the question (Column
2); the initiator of the thread (Column 3), who is the asker in the
STeP_IN_Java system; the programmers who actually posted
replies in the java-user@lucene.apache.org mailing list (Column
4); and the DynC members selected by the STeP_IN_Java system
(Column 5). Shaded usernames in both Columns 4 and 5 show
those who actually replied to the thread in the mailing list and
were also selected by STeP_IN_Java.

Table 1: The experiment results

In seven cases (Thread Nos. 2, 5, 12, 14, 16, 18, and 20), all the
actual repliers in the mailing list have been selected by the
STeP_IN_Java system as DynC members. In eight cases (Thread
Nos. 3, 4, 7, 8, 9, 10, 11, and 19), there is partial matching. Five

9

cases (Thread Nos. 1, 6, 13, 15, and 17) have no matching. This
means that if the Lucene Java API user community had been
using the STeP_IN_Java system, 15 askers would have been able
to get responses through DynCs, provided the technical and social
profiles we simulated remain the same.

Based on the results, we are optimistic that STeP_IN_Java would
perform well in real use because we can expect more precise
profiles. The technical profiles used in the experiment were
created from the email messages. In real use, Java programs
written by programmers will be available for the creation of
technical profiles, and we will have more complete and accurate
technical profiles that reflect the expertise of programmers.
However, the experiment also points to a number of issues for
further exploration, which will be discussed next.

7. DISCUSSION
By exploring the five cases of no matching in the simulation study,
we found that some of the actual repliers are programmers who
develop the Lucene Java API library. Their expertise was not fully
accounted for in their technical profiles because some of them
only recently become active in this user support mailing list. This
points to the need to modify the definition of expertise levels
when library developers and application developers are mixed
together.
Some members are eager helpers [19] who are very motivated to
help others. For example, in Thread No. 6, U0126, who had no
previous direct interactions with U1856, offered his help. A
further examination revealed that U0126 is clearly an eager helper
because he has helped other users 552 times and received help
only 61 times. In real use, when the question is sent only to the
DynC members, some of the DynC members might have
answered; or the eager helper U0126 could declare an include
relationship with all users and gets selected whenever he has
matching expertise. However, there remains the possibility that a
question posted to DynC misses answers provided by an eager
helper who was not selected. An escalation mechanism is being
considered for future addition: When no answers are provided in a
DynC, the system might need to expand the selection of DynC
members by including all experts and finally maybe the whole
community.

One may argue, why not ask all the experts or all the members in
the first place through mailing lists to which all members
subscribe? Mailing lists certainly have their advantages. In
mailing lists, or their variation (e.g., bulletin board systems),
anyone can volunteer expertise whenever he or she feels like it.
The mailing list subscribers identify themselves as experts upon
reading a question. However, the asker has no way of controlling
the quality of the answers or pushing for an answer, and has to
wait for the experts to show up.

At the same time, other subscribers who have neither expertise
nor interest in helping the particular asker on the question have to
spend some time dealing with all the emails. In particular, when
such a mutual helping system as STeP_IN_Java is deployed in a
corporate setting, the time disinterested users spend to deal with
unwanted questions takes away from the limited time they can
otherwise use for productive programming work.
From the asker’s perspective, if every question asked would
always go to all members of the mailing list, the asker risks giving
those colleagues the impression that he or she is rather ignorant
and incompetent [5]. In the STeP_IN_Java system, the questions

are routed to different sets of peers. More important, the receivers
of the questions already have affinitive social relationships with
the asker, which provides a psychological safety net for asking
questions [3]. From the perspective of the experts who receive
questions, they have fewer questions to answer and are interrupted
less frequently.
The other benefit offered by mailing lists is the opportunity for
passive learning, meaning those who are not directly involved in
the questioning and answering can learn by reading the messages
or obtain an awareness of what is going on. This benefit is still
retained in the STeP_IN_Java system because all messages are
archived and linked to the API method.

8. RELATED WORK
The STeP_IN_Java system is related to a number of systems that
have been developed to help programmers acquire external
expertise for their programming task.

Support for searching library methods has been a major research
theme in software reuse [12, 21, 22]. However, most of the reuse
research has focused on devising and evaluating different kinds of
indexing and searching methods. The search support of the
STeP_IN_Java system differs from previous reuse systems in its
personalization and incremental refinement of searching activities.

Recently, a few systems have been developed specifically to
support searching the increasingly large Java API libraries. The
CodeBroker system [21] that we previously developed helps Java
programmers learn to use unknown Java API methods without
explicit search actions. The system monitors programming
activities in the program editor, infers what might be needed by
the programmer, and then automatically recommends library API
methods that are relevant to the current programming task. This
automatic recommendation of Java API methods is further
explored by the RASCAL system [10]. The Hipikat system [4]
takes a similar approach and supports incremental development by
recommending code as well as development documents from the
historical data of a software project.

Several systems, such as Prospector [9], XSnippet [17], and
Strathcona [17] have been developed to find code fragments that
illustrate the use of Java API to facilitate learning. Java
programmers can also search many Open Source Software
systems to find code examples by using websites such as
koders.com, docjar.com, and google.com/codesearch.

The task of finding peer experts to help programmers has been
explored in the past, although none of the systems target helping
programmers to learn Java API methods. Answer Garden [1] is an
early attempt that routes questions about Unix to experts based on
predefined expertise profiles, and accumulates answers from
experts. The Expertise Recommender system [11] mines
configuration management logs to identify experts and
recommends experts based on organizational relations to support
software maintainers. The approach of identifying experts from
project history was further improved and validated in the
Expertise Browser system [13]. Our approach differs from these
by considering social factors that affect expertise sharing and
acquisition.

9. SUMMARY
The effective use of library API methods is fundamental to Java
programming. Learning to use the fast-growing library API
remains a challenge for most Java programmers: programmers

10

often need to quickly find the API method that suits their tasks,
and to understand its subtlety, which is often undocumented. We
have developed the STeP_IN_Java system to support Java
programmers in finding and learning to use API methods on
demand, with the following distinctive features:

(1) The system provides a comprehensive learning support that
ranges from searching, examples, discussion archives, and
asking peer experts.

(2) Search is personalized to the background knowledge of the
programmer and his or her immediate task context.

(3) Peer experts are automatically found when the programmer
needs to obtain help from peers. The finding of peer experts is
contextualized to the programmer’s current task and
surrounding social relationships. If the same programmer asks
questions on different API methods, each group of found
experts will be different because peers who have expertise on
the methods are different. If different programmers ask a
question on the same API method, different groups of experts
will be found because different programmers have different
social relationships with others. If the same programmer asks
a question about the same method at different times, different
groups of experts might be found because social relationships
and individual expertise change as programmers interact with
each other.

The technical evaluation of the search and expert finding
mechanisms of the system has shown promise. Our future work
includes conducting longitudinal evaluations of the system
through its use in a real context to understand the effects of the
individual preferences that programmers make to their technical
profiles and social profiles.

Acknowledgments. This research was partially supported by
MEXT Open Competition for the Development of Innovation
Technology, No. 15103, and MEXT Grant-in-Aid for Exploratory
Research, 17650038, 2005.

10. REFERENCES
[1] Ackerman, M.S. and T.W. Malone, Answer Garden: A Tool

for Growing Organizational Memory, in Proceedings of the
ACM Conference on Office Information Systems. 1990:
Cambridge MA. p. 31-39.

[2] Berlin, L.M., Beyond Program Understanding: A Look at
Programming Expertise in Industry, in Empirical Studies of
Programmers: Fifth Workshop, C.R. Cook, J.C. Scholtz, and
J.C. Spohrer, Editors. 1993, Palo Alto, CA: Ablex Publishing
Corporation. p. 6-25.

[3] Cross, R. and S.P. Borgatti, The Ties That Share: Relational
Characteristics That Facilitate Information Seeking, in Social
Capital and Information Technology, M. Huysman and V.
Wulf, Editors. 2004, Cambridge, MA: The MIT Press. p.
137-161.

[4] Davor C. Cubranic and G.C. Murphy, Hipikat:
Recommending Pertinent Software Development Artifacts,
in Proceedings of the 25th International Conference on
Software Engineering (ICSE03). 2003: Portland, OR. p. 408-
418.

[5] Flammer, A., Towards a Theory of Question Asking.
Psychological Research, 1981. 43: p. 407-420.

[6] Holmes, R. and G.C. Murphy, Using Structural Context to
Recommend Source Code Examples, in Proceedings of 27th

International Conference on Software Engineering. 2005. p.
117-125.

[7] Illich, I., Deschooling Society. 1971, New York: Harper and
Row.

[8] Lange, B.M. and T.G. Moher. Some Strategies of Reuse in
an Object-oriented Programming Environment, in
Proceedings of Human Factors in Computing Systems. 1989.
Austin, TX: ACM Press.

[9] Mandelin, D., et al., Jungloid Mining: Helping to Navigate
the API Jungle, in Proceedings of 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation. 2005: Chicago, IL. p. 48-61.

[10] McCarey, F., M.Ó. Cinnéide, and N. Kushmerick,
Recommending Library Methods: An Evaluation of the
Vector Space Model (VSM) and Latent Semantic Indexing
(LSI), in Proceedings of 2006 International Conference on
Software Reuse. 2006. p. 217-230.

[11] McDonald, D.W. and M.S. Ackerman, Expertise
Recommender: A Flexible Recommendation System
Architecture, in Proceedings of CSCW 2000. 2000. p. 101-
120.

[12] Mili, A., et al., Toward an Engineering Discipline of
Software Reuse. IEEE Software, 1999. 16(5): p. 22-31.

[13] Mockus, A. and J. Herbsleb, Expertise Browser: A
Quantitative Approach to Identifying Expertise, in
Proceedings of 2002 International Conference on Software
Engineering. 2002: Orlando, FL. p. 503-512.

[14] Nahapiet, J. and S. Ghoshal, Social Capital, Intellectual
Capital, and the Organizational Advantage. Academy of
Management Review, 1998. 23: p. 242-266.

[15] Raymond, E.S., The Art of UNIX Programming. 2004,
Boston, MA: Addison-Wesley.

[16] Robertson, S.E., et al., Okapi at TREC-3, in The 3rd Text
REtrieval Conference (TREC-3), D.K. Harman, Editor. 1995,
National Institute of Standards and Technology:
Gaithersburg, MD. p. 109-126.

[17] Sahavechaphan, N. and K. Claypool, XSnippet: Mining for
Sample Code, in Proceedings of the 21st ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications. 2006: Portland, OR. p. 413-
430.

[18] Salton, G. and M.J. McGill, Introduction to Modern
Information Retrieval. 1983, New York: McGraw-Hill.

[19] van den Hoff, B., J. de Ridder, and E. Aukema, Exploring the
Eagerness to Share Knowledge: The Role of Social Capital
and ICT in Knowledge Sharing, in Social Capital and
Information Technology, M. Huysman and V. Wulf, Editors.
2004, Cambridge, MA: The MIT Press. p. 163-186.

[20] Williams, M.D., What Makes RABBIT Run? in
International Journal of Man-Machine Studies. 1984. p. 333-
352.

[21] Ye, Y. and G. Fischer, Supporting Reuse by Delivering
Task-Relevant and Personalized Information, in Proceedings
of 2002 International Conference on Software Engineering
(ICSE'02). 2002: Orlando, FL. p. 513-523.

[22] Ye, Y. and G. Fischer, Reuse-Conducive Development
Environments. Automated Software Engineering, 2005.
12(2): p. 199-235.

[23] Ye, Y., Y. Yamamoto, and K. Nakakoji, A Socio-Technical
Framework for Supporting Programmers, in Proceedings of
2007 ACM Symposium on Foundations of Software
Engineering (FSE2007). 2007 (forthcoming).

