
Presented at the STC (Socio-Technical Congruence) Workshop at ICSE2008, Leipzig, Germany, May, 2008.

Software Development as Activities Creating and Utilizing
Socio-Technical Information Spaces

Yunwen Ye1,2
1Dept. of Computer Science

University of Colorado
Boulder, CO80309, USA
yunwen@colorado.edu

Kumiyo Nakakoji2,3
2SRA Key Technology Lab

3-12 Yotsuya, Shinjuku
Tokyo, 160-0004, Japan

 kumiyo@kid.rcast.u-tokyo.ac.jp

Yasuhiro Yamamoto3
3KID Laboratory, RCAST

U. of Tokyo, 4-6-1 Komaba, Meguro,
Tokyo, 153, Japan

yxy@kid.rcast.u-tokyo.ac.jp

ABSTRACT
Software development is a process of gathering and creating
information; it requires programmers to uncover the various parts
that are related to their current task. We propose to conceptualize
a software system being developed as a socio-technical
information space that has multiple layers of links that relate
different units of information resources that include code,
documents and programmers. This conceptualization can lead to
the creation of better tools that support the exploration of various
latent relations to identify relevant resources that cannot be easily
achieved by technical or social analysis alone.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering, user interfaces. D.2.10
[Software Engineering]: Design – representation.

General Terms
Design, Human Factors

Keywords
Socio-technical information space

1. INTRODUCTION
With the increasingly widely accepted view of software systems
as evolving entities, the percentage of incremental, continuous
development tasks in software development has risen quickly.
Several factors fueled the rapid increase of incremental and
evolutionary construction of software systems. First, the turnover
rate of the software industry has skyrocketed and many projects
have to hire new developers in the middle of system construction
and those new hires have to work within an existing software
system without knowledge of its prior history. Second, the wide
spread of the agile methodology has turned many software
projects into cycles of continuous development by adding features
piecemeal. Third, many Web-based software systems, such as
social networking systems and e-commerce systems, start with a
rough understanding of its specification and have to evolve the

design and development of system while such systems are being
used by many users.

Because continuous development tasks add new functionality or
features by changing an existing software system, programmers
need to understand the existing systems and determine where
changes or new development should be made. Given the size and
complexity of most software systems, it is impractical and
unnecessary to gain a full understanding of the whole system. The
key is to gain the understanding of the parts of the system that
bear relevance to the current task, which is called a task context in
[5] and a working set in [6]. Task contexts do not exist a priori;
they emerge as developers explore the software system and
determine the relevancy based on their understanding of the task
and the system structure. Decades of research efforts have made
huge progresses in development methodologies that strive to
isolate changes to local modules, but many changes are still
scattered among the system. One study has shown that
programmers spend 60-90% of their times to pinpoint relevant
source code through reading and navigating [4].

A programming context exists in terms not only of the source
code but also of related documents as well as those programmers
who worked on the parts. It has been observed that much of
system knowledge was retained in the head of programmers [10].
Peer programmers are also important information resources for
system comprehension, and should be utilized to help pinpoint
relevant source code. Treating source code, documents and
programmers as equally important resources for the information
needs of software development, this paper proposes to
conceptualize a software system being created as an evolving
socio-technical information space (STIS) that consists of three
kinds of information resource nodes (code, documents, and
programmers) that have triangulated relations. Under this
conceptualization, each software development activity adds new
information resource nodes to the STIS of the software system
being constructed, adds new relations between information
resource nodes either explicitly or implicitly, or both. At the same
time, such development activities can utilize previous relations in
the STIS through spread activation along the triangulated relations
to explore the system and identify latent relevance among code
parts that cannot be determined easily by either structural
dependency or conceptual similarity along.

2. LAYERS OF RELATIONS AMONG
INFORMATION RESOURCE NODES
The STIS of a software system consists of three kinds of
information resource nodes: Programmer, Documents, Code. The
entity Programmer refers to all developers who have participated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Presented at the STC (Socio-Technical Congruence) Workshop at ICSE2008, Leipzig, Germany, May, 2008.

in the development of the system. The entity Document includes
the traditional design documents, test plans, test cases, as well as
emails in associated mailing lists for the system development,
version repository commit logs (e.g. CVS) and bug report records
(e.g. GNAT) that represent the domain context under which the
system has evolved. The entity Code refers to various levels of
granularity of the source code of the software system.

The STIS of a software system also includes triangulated relations
among Programmer, Document, and Code. Such triangulated
relations can help programmers identify the information resources
that are relevant to their task at hand, such as semantically related
code segments, design rationales that provide the context for
understanding the code of interest, previous solutions to similar
tasks, and other developers who might have expertise on the task.

Three basic layers of relations weave a software system into a
STIS with a collection of interlinked information resource nodes:
the structural layer, the conceptual layer, and the developmental
layer (Fig 1).

Figure 1: A Socio-Technical Information Space (STIS)

2.1 The Structural Layer
A software system can be viewed as a collection of Code nodes
linked by the syntactic or dynamic structure of the programming
language, such as data flow, control flow, or linear order.
Code nodes can have different levels of granularity. The most
basic node is its physical unit, a file or a class. At this file
granularity, nodes are organized and linked by their hierarchical
file structure or inheritance structure. Each file node can be
decomposed into language specific module-level nodes. At this
module granularity, nodes are linked through their control flow
and data flow that defines the order of execution. Those modules
also have a linear relation as they appear sequentially in the file,
which defines the order of compilation. From the perspective of
socio-technical information space, the file presented in most
program editors can be interpreted as a specific view of presenting
the software system based on the linear link of module-level Code
nodes. The module-level nodes can be further decomposed into
nodes of statement blocks and variables, which are linked by their
linear order, define and use relationships, control flow, and data
flow. Links between nodes of coarse granularity can be
decomposed into the links that relates nodes of finer granularity.
For example, links between files can be decomposed into links
that go into files or go into modules that compose the files.

2.2 The Conceptual Layer
The conceptual layer of relation links nodes based on the structure
of the problem domain. Problem domains are often described in
functionalities, features, concerns or performance criteria. Each
functionality, feature or concern is realized in a set of code nodes.

Code nodes that combine to implement a certain feature are
obviously related. Functionalities and features interact with each
other, and such interaction gives rise to another type of
relationships among the code parts that link different parts of the
code at different granularities such as files, modules and blocks.
Development documents such as emails and bug management
records often describe functionalities, features or concerns, and
they bear relations among themselves and with code at the
conceptual layer.

Ideally, the conceptual relationship among the code should be
consistent with the structural relationship, and when programmers
need to modify a feature, they only need to deal with changes that
are localized in a specific part in the structure. As we mentioned
before, the two types of relationships are unfortunately often
inconsistent. An analysis of randomly chosen 20 change tasks in a
well-designed software project found that 15 involves more than
one classes and 5 involved more than one package [7]. The
inconsistency of two kinds of relationships is one major challenge
for continuous development task because developers have to
crisscross the system to identify those relevant parts [6].

2.3 The Developmental Layer
Programmers do not add code to the programs linearly by one
statement following another statement, or one file following the
completion of another file. They add pieces to the system by
realizing a certain task plan that satisfies a particular sub-goal [8].
A plan is a set of actions that, when executed in a correct order,
achieve the goal of the plan, which often corresponds to a feature,
or a use case. In the implementation of a plan, programmers often
have to touch a set of program parts by either changing or adding
new pieces at varied levels of granularity. Each development task,
therefore, forms a trail that cuts through the information space of
the software system by linking those relevant code parts. However,
those trails become lost in the final program and cannot be easily
reconstructed.

Programmers currently use a range of tools for development,
communication and coordination. Those tools generate abundant
information about how software systems have been developed.
Viewed from the point of code, such developmental information is
meta-information about the code; and although the meta-
information is not essential for system execution, it provides data
to reconstruct the trails previous programming activities have
blazed, which can be used to help later programming activities for
navigating the source code and documents.

Such meta-information about the system can be used to create
another layer of links among different parts of code. Meta-
information, or interaction histories of programmers revealed in
communication and coordination tools (i.e. who touched what
parts of the code at what time), can be used to infer the relevance
of code parts. Source files that have been checked in to the code
repository frequently at the same time signal a potential logical
coupling [12], because programmers tend to add code one plan
chunk at a time. If we dig deeper, the code fragments that have
been changed at about the same time could further pinpoint the
logical coupling to a finer granularity. Code parts that have been
developed or changed by the same developer could also signal a
potential link among them because developers are assigned to
tasks along the decomposition of functionalities or features. Bug
management records could help programmers gain a deep
understanding of the context of certain code, and links code parts
that are changed simultaneously in response to a single bug report.

Presented at the STC (Socio-Technical Congruence) Workshop at ICSE2008, Leipzig, Germany, May, 2008.

3. CREATING RELATIONS IN SOCIO-
TECHNICAL INFORMATION SPACES
The paramount goal of conceptualizing software systems as
STISes is to provide navigational support for programmers to
identify relevant information hidden in the software system for
their current development task. Most development tools already
have mechanisms that link code parts through structural
dependency such as define-use relationship and call relationship.
Using this structural dependency alone has been shown to have a
high cost both in terms of task and cognitive resources [6].
Viewing system systems as STISes provides a unified conceptual
framework that treats all three kinds of information resource
nodes and their three layers of relationships uniformly, and guides
the development of new mechanisms that allow programmers
explore latent relations among different aspects of the software
system. We divide relations in STISes in two types: primary
relations and composite relations, and introduce the major
categories with some examples.

3.1 Primary relations
Primary relations refers to the kinds of relations that can be
directly obtained by analyzing existing data, source code, and
organizational structure of the development team. Six categories
of primary relations exist in the STIS of a software system:

• code-code: A piece of code can be related to other pieces of
code in many different ways. For example, Call(c1, c2) defines
the order of execution; they are related if one inherits from the
other.

• code-document: A piece of code is related to a document if it
implements features or functionality contained in that document
based on traceability analysis [1]; or if the document, such as a
CVS log, explains the development history of the code [2]; or if
the code is accompanied by a reference documentation.

• document-document: A document is related to another
document if their contents are related. For example, a bug report
is related to emails that discuss the bug; an email is related to
another email if it replies to the other.

• programmer-code: A programmer is related to a piece of code if
he or she has done something with it. For example, Modify(p, c,
t) represents that programmer p has modified code part c at time
t. This relation could indicate that p might have implicit
expertise about the code part c.

• programmer-document: A programmer is related to a document
if he or she participated in the discussion, creation, or
modification of the document. This relation may imply the
programmer has contextual knowledge about the document.

• programmer-programmer: The relation between programmers
can reflect the history of their social interactions, including who
has helped whom, who prefers to work with whom, and who has
sent emails to whom; or the relation between programmers can
be defined by their co-location which has impacts on
communication and coordination.

Examples of primary relations listed above are certainly not
exhaustive. Much previous research has tried to uncover various
kinds of primary relations using either the structure-based
approach or the concept-based approach.

Structure-based approaches analyze the control flow and data flow
of programs to generate an abstract description of the system by
generating the links among code parts. Various syntactical
dependency graphs are generated at varied granularites. Such

graphs provide tools for thoroughly examining the impact of a file,
a variable or statement to the whole system. Due to its
thoroughness, such graphs are very complicated and tools
unhandy to use. For a particular task, not all dependent parts are
affected; sorting out the task-relevant ones is not easy in
overcrowded dependency graphs. In addition to the difficulty in
tool operation and the inherent complexity of dependency graphs,
this approach only captures the current state of the system and
does not give a historical account of its development.

The concept-based approach tries to use semantic information
contained in programs and documents to pinpoint task relevant
parts. This approach does not strive for the complete analysis of
the whole system. Instead, it utilizes heuristics to go through the
cycles of hypothesis and verification to search through the
information space of the system. Many researchers have observed
that programmers typically look at the comments or identifiers
that reflect the concepts of the change task, assuming that code
parts that contains conceptually similar or identical words are
related to their current task. Conceptual similarity provides the
first cut search to narrow the code parts that are to be further
investigated and analyzed for verifying their true relevance.
Information retrieval techniques, ranging from vector spaces and
latent semantic analysis, have been used to identify relevant code
based on their conceptual similarity with various degrees of
successes. Hipikat [2] has gone further by locating content-similar
documents to provide contextual and developmental information.

3.2 Composite relations
Composite relations further relate information resources by using
the previously defined primary links through the application of the
spread activation strategy.

Figure 2: Composite relations in an STIS

As illustrated in Fig. 2, a programmer is linked to other
programmers if they have touched the same code part (p1, p2) or
participated in the discussion of the same topic in emails (p1, p3).
An email is linked to other emails if they both discuss about the
same code (email1, email2). Bug report records are linked to
emails if they are related to the same code part (email1, bug
report1). Code parts are related if they are related to the same bug
report (c1, c2). Fig. 2 only shows the composition of two primary
relations. Further composite relations can be obtained through
spread activation: for example, p1 is related to bug report1
through the links of (p1, c1) and (c1, bug report1).
Repeatedly applying the spread activation strategy to the links
among the triangulated relations Programmer-Document-Code,
programmers can identify related information resources from any
entry point that they first hypothesize as relevant to their task at
hand. They start with a piece of code that they know is related
with their task, and locate relevant code, emails, bug report
records and other knowledgeable developers. They can also start
with a programmer they know that stands in relationship with

Presented at the STC (Socio-Technical Congruence) Workshop at ICSE2008, Leipzig, Germany, May, 2008.

their current task to identify similar set of information resources.
Or they can start with a particular email discussion or bug report.

Several researchers have attempted to use these kinds of
composite relations to uncover latent relations among information
resources. Ying [11] has developed a method of recommending
relevant files to be changed when one file is changed by a
programmer. The method mines CVS logs and deems those files
that are frequently changed at the same commit transactions have
logical coupling. Zimmermann et al. [12] adopts a similar
approach and refines the recommendation to the granularity of
code segments.

Within STIS, the above strategy can be defined as a composite
relation LogicalCoupling(c1, c2) based on the primary relation
between programmer and file Modify(p, c, t):

LogicalCoupling(c1, c2): if there exists p and Modify(p, c1, t1)
and Modify(p, c2, t2) and t1-t2 < delta where delta is the time
separation used as the threshold to define co-change.

From the same primary relation Modify(p, c, t), we can obtain a
composite relation between developers SocialCoupling(p1, p2)
similar to what was proposed in [9]:

SocialCoupling(p1, p2): if there exists c and Modify(p1, c, t1)
and Modify(p2, f, t2) and t1 – t2 < delta.

Taking code relation into consideration, we are able to compute
another composite relation between programmers described in [3]:

SocialDependency(p1, p2): if there exists c1 and c2, and
Modify(p1, c1) and Modify(p2, c2) and Call(c1, c2)

The above two composite relations infer that programmer p1 and
p2 are potentially coupled in their task assignments, and one could
serve as information resources for the other. Because social ties
affects the effectiveness of information sharing and exchange, we
have taken a step further by considering the existing social
relationship among programmers and estimate the possibility that
a programmer p1 is willing and able to help programmer p2 for a
given task of dealing with code c [10]

HelpingProbablity(p1, p2, c): Modify(p1, c) and Friendly(p1,
p2)

Or, we can loose the criterion of measuring expertise on code c by
treating all programmers who modify code parts that affect or are
affected by c as potential experts and get the following composite
relation:

HelpingProbaility(p1, p2, c): if there exists c1 and (call(c1, c)
or call(c, c1)) and Modify(p1, c1) and Friendly(p1, p2)

The above examples are the composite relations that have been
explored by existing research, demonstrating how a uniformed
socio-technical information space can help us reasoning about the
relations about code, documents and programmers. New
composite relations can be developed by combining different
types of primary relations. For example, we are currently
developing a measurement SiteCoupling(s1, s2) that can be used
to measure how two sites are coupled in a distributed software
project:

SiteCoupling(s1, s2): SUM(SocialCoupling(pi, pj), for all pi at
site s1 and pj at site s2)

This measurement could be used to predict and manage
communication and coordination cost across different sites.

4. THE ROAD AHEAD
The conceptualization of software systems as socio-technical
information spaces tries to capture and infer multi-layered
relations among various types of information resources based on
primary relations that can be obtained from source code,
documents and development history. Instead of focusing on
creating links based on a particular relationship, the goal of
constructing social-technical information space from a software
system being created is to provide programmers with multiple
navigation paths along different layers of relations depending on
the particular needs and background knowledge of the
programmer. The goal is not to pre-compute and present all the
relations, but provide means for programmers to reason and
explore about relations among various information resources in a
particular context in which composite relations are dynamically
created depending on the interest of programmers. The major
challenge lying ahead is how to develop an easy to use interface
through which programmers can interact with the socio-technical
information space and find relevant code and information
effectively and efficiently by navigating along composite relations
by combining existing primary relations as needed.

5. REFERENCES
[1] Antoniol, G., et al., Recovering Traceability Links between

Code and Documentation. IEEE Transactions on Software
Engineering, 2002. 28(10): p. 970-983.

[2] Davor C. Cubranic and G.C. Murphy, Hipikat:
Recommending Pertinent Software Development Artifacts,
in Proc. ICSE03. 2003. p. 408-418.

[3] de Souza, C.R.B., et al. Supporting Collaborative Software
Development through the Visualization of Socio-Technical
Dependencies, in Proc. GROUP07. 2007. p.147-156.

[4] Erlikh, L., Leveraging Legacy System Dollars for E-Buisness.
IT Pro.. 2000(May/June): p. 17-23.

[5] Kersten, M. and G.C. Murphy, Using Task Context to
Improve Programmer Productivity, in Proc. FSE06. 2006. p.
1-11.

[6] Ko, A.J., H.H. Aung, and B.A. Myers, Eliciting Design
Requirements for Maintenance-Oriented IDES: A Detailed
Study of Corrective and Perfective Maintenance Tasks, in
Proc. ICSE05. 2005. p. 126-135.

[7] Murphy, G.C., et al., The Emergent Structure of
Development Tasks, in Proc. ECOOP05. 2005. p. 33-48.

[8] Rist, R.S., Systems Structure and Design, in Proc. Empirical
Studies of Programmers: Sixth Workshop, 1996, p. 163-194.

[9] Wagstrom, P. and J. Herbsleb, Dependency Forecasting in
the Distributed Agile Organization. CACM, 2006. 49(10): p.
55-56.

[10] Ye, Y., Y. Yamamoto, and K. Nakakoji, A Socio-Technical
Framework for Supporting Programmers, in Proc FSE07.
2007. p. 351-360.

[11] Ying, A.T.T., Predicting Source Code Changes by Mining
Revision History. Master's Thesis, 2003, University of
British Columbia, Canada.

[12] Zimmermann, T., et al., Mining Version Histories to Guide
Software Changes, in Proc ICSE2004. 2004. p. 563-572.

