
 1

Toward Taxonomy of Open Source:
A Case Study on Four Different Types of

Open-Source Software Development Projects
Kumiyo Nakakoji1,2,3 Yasuhiro Yamamoto2,4 Yoshiyuki Nishinaka1 Kouichi Kishida1

1SRA Key Technology Laboratory Inc.
3-12 Yotsuya, Shinjyuku
Tokyo, 160-0004, Japan

+81-3-3357-9361

2Grad. School of Information Science, NAIST
8916-5, Takayama-cho, Ikoma

Nara, 160-0004, Japan
+81-743-72-5381

3PRESTO, JST

 4Japan Society for the
Promotion of Science

{kumiyo, yxy}@is.aist-nara.ac.jp {nisinaka, k2}@sra.co.jp

ABSTRACT
As more and more data and experiences on open-source
software development are reported and shared among the
community, a number of controversial arguments regarding
the benefit, necessary support, key issues, and challenges
for open-source projects have emerged. Many of these
stem from the fact that the meaning of the term open-source
software development (OSSD) has become unnecessarily
overloaded . Different OSSD projects have radically
different goals, motivations, development processes and
communication styles. Accordingly, they benefit in different
ways from being “open”.

This paper presents our case study in which we analyze and
compare four different types of OSSD projects carried out at
SRA Inc., Japan. Through the case study, we have
identified a wide range of variety among the software
projects, all of which labeled “open source,” and have
found that there are at least three different types of OSSD:
archetype, security, and rapidness. Each type has a different
style of project management, development, communication,
and evolution. This paper concludes by arguing that we
need a taxonomy for the different types of OSSD projects in
pursuit of technological and practical support for OSSD.

1. INTRODUCTION
Although more and more data and experiences on open-
source software development have been reported and
shared among the community [11, 13, 14, 15], there still have
been a number of controversial discussions over open
source software development (OSSD). Arguments include:

• whether OSSD produces more secure software than
traditional development,

• whether OSSD really embraces evolvability of the
software,

• whether OSSD results in better quality than traditional
development processes,

• whether its development style actually adheres to
more “cathedral” than “bazaar,” and

• whether OSSD really helps community development.

Many of those controversial arguments, however, seem to
stem from the overloading of the term, open source software
development. In fact, there are many completely different
development approaches which are labeled open source
software development only because they produce open
source software under open source licensing, such as GPL
[6] or BSD’s [2]. The term, open source, is thus overloaded,
since it refers only to the property of the outcome; not
necessarily to the process or to the project. Motives,
processes, goals, may significantly differ for different open
source software development projects. However, there has
been little effort reported to classify different types of OSSD
other than looking at licensing differences. We need a
taxonomy for representing different types of OSSD so that
we can better talk about what technological and
institutional support are necessary, when a project should
go or not go for open-source, and what we can expect for
being open source.

In January 2001, the Information technology Promotion
Agency (IPA) of the Ministry of Economy, Trade, and
Industry (METI) of Japan, decided to conduct a survey on
the current status of OSSD in the Japanese software
industry. Our company, SRA Inc., was awarded the grant to
conduct the survey, which identified different types of
OSSD, and compared existing industrial and governmental
support for OSSD in different countries. SRA is a leading
company in the open source movement in Japan, who has
been supporting the activities of the Free Software

 2

Foundation (FSF) since 1987, and has carried out a variety
of open source software development projects within its
Open Source Business Division. This paper is based on a
part of the findings from the survey, which is a case study
over four different open source software development
projects conducted within SRA, Inc., Japan.

The four projects we have looked at are (Table 1):

1. the GNUWingnut project, which provides support for a
number of GNU software applications, such as GCC
(GNU Compiler Collection) and GNU Emacs, for
Japanese industries who need GNU software ported into
their hardware platforms;

2. the Linux Support project, which offers support for Linux
users as a master SI distributor;

3. the SRA-PostgreSQL project, which supports Japanese
customers who use the PostgreSQL database, which is
an open source database; and

4. the Jun project, which is a 3D graphic and multimedia
application library for VisualWorks Smalltalk and Java.

Table 1: The Four OSSD Projects Studied

 OSSD Project Domain

1 GNUWingnut development
environment

2 Linux-Support operating system

3 SRA-PostgreSQL database

4 Jun 3D multimedia library for
Smalltalk and Java

Those four projects vary in their development styles,
communication styles, management styles, evolutionary
styles, and in their underlying philosophy.

We identified three major focuses : archetype, security, and
rapidness. The primary objective of the first type of software
is to serve as a reference model. The objective of the
second type is to achieve rapid recovery . The third type’s
primary goal is to have timely development by distributing
work among a community of users.

Through the case studies, we have identified a wide range
of varieties among the software projects, which are all
labeled OSSD. We argue that we urgently need a taxonomy
and better names referring to different types of open source
software development . Such a taxonomy, would enable
more constructive, fruitful discussions on how and why
open source is a promising approach for the development of

a certain type of software, which of existing software
engineering frameworks should be used to support open
source software development, and on which aspects of
open source software development cannot be supported
within the existing software engineering approaches.

In what follows, we first describe a brief overview of each of
the four projects we have studied. We then compare the
four projects from different perspectives including uses and
stakeholders, communication styles, evolutionary
processes, and primary focuses. Based on the comparisons,
we present our initial taxonomy for OSSD. The paper
concludes with an illustration of how such a taxonomy can
be used to better understand the effect of being open -
source, followed by a discussion of future directions.

2. THE FOUR PROJECTS
This section first describes how we conducted the case
study. We then present an overview of each project,
describing what open-source software each project deals
with, how each project does business with the software,
and what benefit they realize from the software being open-
source.

2.1 A Case Study
A survey was conducted by interviewing the project
manager of each of the four open-source software
development projects. During the interview, we asked
questions including:

• what open-source software they are dealing with;

• how the development of the open-source software has
been done;

• what communication media the developers use in the
development of the software;

• how they do business with the open-source software;
and

• what benefit they see by doing business with open-
source software.

By addressing these questions, their answers often got
expanded further, and these questions served as seeds for
discussions, not necessarily obtaining answers to the
specific questions. In addition to the interviews, we asked
for their mailing-list archives and quantitative data related to
particular aspects when necessary.

Note that the open-source software we describe in this
paper reflects the views of those with whom we conducted
the study . The views and opinions expressed by the
project members who were interviewed may not be
consistent with that of the core members of each project.
For instance, we have interviewed the SRA -PostgreSQL
project members at our company, but we have not
interviewed with the PostgreSQL core development team

 3

members. This case study is to report how the OSSD project
members at a for-profit company view their OSSD, and how
different types of OSSD results in different types of
business projects.

2.2 The GNUWingnut Project
As the name states, this project deals with GNU (Gnu is Not
Unix) software [7] developed by FSF (Free Software
Foundation) [4]. The GNUWingnut project helps clients
import GNU software programs onto their particular
hardware platforms. GNU is a software project that develops
a “free” unix operating system organized by Richard
Stallman at FSF. For Stallman and FSF, programs are
“scientific knowledge to be shared among mankind” [8].
That is, for them, software is knowledge developed by
“highly trained professional programmers ” and therefore to
be shared among human beings in the same way as the
knowledge medical doctors develop is shared through
research papers and books. It is this spirit that makes their
software free. They have been using the term “free” not to
mean that the software is free of charge but the source code
is free to view, modify, and distribute under the license
called GPL (GNU Public License) [6] with the ownership
notion called copy-left [10].

Although it is not our purpose here to describe GNU and
FSF in detail, several interesting characteristics to note.
Although it may not be explicitly stated, this view of
programs as scientific knowledge has developed a culture
where open-source programs need to be of very high
quality; they want to develop the “correct” and “best ”
program for implementing a piece of functionality. Because
it is to be good and to be shared among mankind,
“democratic” decision-making and centralized control has
been exercised. GNU software development teams observe
strict coding rules and format guidelines [9] to make their
software to be easy to be shared among mankind. Only one
version of the software is allowed and variations and
alternatives need to be integrated within the core version.
All bugs found need to be reported so that the core
members can fix them. Overall, control is very much
centralized.

The main task of the GNUWingnut project is to help clients
port GNU programs into their target machines. A typical
case is that a hardware vendor needs to have GNU Emacs
and GCC operate on their super-computer operating
systems. This involves two types of work. The first type of
work is to develop patch programs for the clients. Although
the source code is available , many GNU programs are very
large and complex and require substantial knowledge and
experience to understand. The GNUWingnut project
members offer such expertise, enabling clients to develop
patch programs faster and better.

The second type of work, which is more interesting and
possibly unique to GNU-related software development, is to
help clients increase the quality of patches by revising and
refining them so that they can reported back to the GNU
core members. There seem to be three reasons why the
clients need such help from the GNUWingnut project.

First, as we noted above, a GNU project wants to have a
single version for a particular program and all bug fixes and
updates need to be reported back in to the core
development team. For instance, when a super-computer
vendor develops a patch program of the GCC program for
their super-computer operating system, this company needs
to have this patch program reported back into the GCC core
development team; otherwise they have to develop a patch
program for every subsequent update of the GCC program.
Second, as also noted above, GNU requires fed-back
programs strictly adhere to GNU guidelines for coding,
formatting, and documenting. Although most of these
guidelines can be ensured by using appropriate “modes” in
the GNU Emacs editor, it still requires expertise and skills in
observing these guidelines. Third, there is a “cultural
barrier” for Japanese programmers, which keeps them from
directly communicating with the GNU core members
through mailing-lists. Many programmers in Japan view the
GNU core team as a group of super-programmers with
highly respected skills, and want to keep a “respectful
distance” from them. Some of the GNUWingnut project
member have been closely working with the FSF members
for the last decade, and they serve as the intermediary
between the clients and GNU core members.

To summarize, because the source code is open, clients can
use the software for their platforms by developing their own
patch programs. On the other hand, the GNU software is
under strictly centralized control, and those who create
patch programs need to report their efforts back to the core
development team. In addition to expertise required to
understand the large amount of source code, this is where
another type of expertise is necessary; to communicate with
the core members, and to adhere to GNU coding guidelines.
This is due to the fact that the GNU treat their open-source
software as scientific knowledge to be shared among people.
Such knowledge needs to be of very high quality and to be
easily sharable among other people therefore needs strict
guidelines.

2.3 The Linux Support Project
The Linux Support project at SRA Inc., provides user support
for the Linux operating system, excluding the Linux kernal.
We make this distinction because, similar to GNU, the Linux
kernel development is under centralized control [15] , while
the remainder of Linux has been developed in the bazaar
style with distributed con trol [21]. The Linux support

 4

project is concerned with supporting the bazaar model, and
accordingly in this paper when we refer to Linux we are
referring to the portions of Linux outside the kernel unless
specifically noted.

Contrary to the GNU programs, there have been multiple
versions of programs for implementing a single functionality.
No official centralized repositories have been developed for
Linux OS peripheral tools, such as device and printer drivers.
Each developer of a source code puts it on the Web; and
Web search engines may find it when necessary. Because
multiple versions for a single functionality exist all over the
world (i.e., the World Wide Web), directory services are
necessary to find necessary components. Also, there can
be components that are not compatible with one another.
Distribution packages have been developed to help
customers find components that are compatible with each
other.

O’Reiley specifies four types of business models that are
possible by dealing with open-source [18]: (1) Support
Seller, (2) Loss Leader, (3) Widget Frosting , and (4)
Accessorizing. The Linux support project at SRA Inc., can
be characterized as a “support seller.,” that helps customers
to identify and solve problems in the course of using Linux..
A typical task is to help clients find appropriate distribution
packages and to customize software for their needs. Linux
Support Project members are also asked to find up-to-date
information on security and bug reports related to their
clients’ Linux programs, which are scattered all over the
world on the Web.

Thus, what is most required for the Linux-support project
members are (1) an ability to find necessary information, and
(2) an ability to read and understand source code produced
by other people. For instance, if a bug is found in a Linux
program, a typical process taken by a project member is as
follows:

1. first, read the newest version of the source code to see
if the bug is fixed,

2. if not, then read the released version of the source
code to see if the bug is fixed,

3. if not, then check a bug tracking report produced by
the distributor if it reports the bug,

4. if not, then check related mailing lists to see if the bug
is reported,

5. if not, then try to find Web pages that report similar
bugs through the Web search.

When they find a newly-fixed program, they typically use
the diff command to see how the bug is fixed, and apply the
changes to the existing source code.

Interestingly, Linux Support members develop patch
programs for their customers and fix bugs, but not
necessarily report back to the developers. According to the
project leader of the Linux support project, one obvious
reason seems to be that the Linux customers do not care
much about version updates. They stay with whatever the
working version even if the version update is announced as
long as the customer’s system keeps working. When
revision is unavoidable, they just want to re -install
everything from scratch, instead of updating versions.

This is very different from the GNUWingnut project. In
GNUWingnut, it is critical that the patch programs that have
been developed and used at a customers’ site are
incorporated within the core GNU software version because
otherwise they would be left behind; once incorporated, on
the other hand, their drivers and interfaces will be taken care
of by the GNU core development team. In contrast, Linux
Support Program customers do not care about how a
particular Linux program version evolves. If they find better
ones, they will simply reinstall everything and develop
patch programs from scratch.

2.4 The SRA-PostgreSQL Project
The SRA-PostgreSQL project deals with the PostgreSQL
database [20], which is an open source database system
originally developed as a research prototype . The system
has evolved with an SQL interface and is now comparable
with large-scale commercial database systems.

Being a database system, the robustness is a “must” for the
PostgreSQL system. The system goes under a very strict
centralized version control, supported by the core
development team and the major development team,
members of each of which are strictly controlled through the
membership to specific mailing lists.

Democratic decisions regarding the development of
PostgreSQL are made within the development mailing lists.
Discussions are not so much on the implementation and
source code, but as on a specification of the system
because for a database system, the change in specification
may affect the overall performance and quality of the
system.

The primary task of the SRA-PostgreSQL project has been
internationalization and localization. This has been done in
four steps: first, the SRA-PostgreSQL project members have
locally developed patch programs so that PostgreSQL can
deal with the Japanese language. Second, they modified the
patch programs so that they were able to deal with any two-
byte code languages and adhere to the BSD licensing. Third,
the patch programs were incorporated in the main version of
the PostgreSQL system. Finally, the internationalized
version has been disseminate d internationally .

 5

In addition to internationalization and localization, the SRA -
PostgreSQL project helped Japanese clients to port the
system to multiple platforms, and conducted testing and
benchmarking for their clients . One of the SRA-PostgreSQL
project members is a member of the major development team,
and the project served as a representative agent in Japan,
providing a Japanese ftp site to for bug fixes and collection
and distribution of patch programs. Many Japanese
customers used to have trouble finding necessary
information because most information regarding
PostgreSQL is in English. The SRA-PostgreSQL project
helped the customers by translating information into
Japanese and by serving as agents mediating
communication between customers and the PostgreSQL
development team members.

For PostgreSQL, the biggest advantage of being open-
source is that source is kept open so that people can more
quickly find what is wrong in the source --- bugs become
shallower with many eyeballs [21]. In fact, not many people
in the PostgreSQL user community contribute their source
code. They do testing and finding bugs by using the source
code, which is publicly available.

Another interesting aspect of the PostgreSQL project
comes from the fact that the software is a database system.
When reporting a bug, it is often necessary to use a specific
set of data to reproduce the bug, since without the data it is
very difficult to have programmers understand what is
wrong and debug it. However, such data is often
proprietary and cannot be made public. The customers
therefore asks the SRA-PostgreSQL members to debug it,
by making their data set available only to the project
members. The SRA-PostgreSQL members then find what is
wrong, develops patch programs and bug-fixes, and report
feedback to the PostgreSQL core development team.
Because robustness is a critical issue for databases, it is
very important that bug reports and patches are fed back to
the core development team.

2.5 The Jun Project
The Jun project at SRA Inc., deals with the Jun library,
which is a VisualWorks Smalltalk and Java application
library components on 3D and multimedia data handling [12].
Different from the above three projects, this project deals
with the software which has been developed in-house. We
have reported how the Jun library has evolved over the last
five years and how centralized decision making and
continuous evolution has been achieved [1].

As noted in [1], it is not only source code that has been
used by the community, but also the underlying object
model that has been used by the community. It has been
served as a reference model in the development of 3D and
multimedia handling, ensuring us with the highly advanced
status in the software community; a type of the loss -leader
business model [18]. Jun’s evolution differs from other well-
known open-source systems such as PERL [23], or Apache
[3, 14]. Instead of a wide community of programmers each
contributing a small part, almost all of Jun was developed
by a small group of three to five programmers at a time. The
development process is strictly controlled by the single
project leader, who does both quality control and decision
making in terms of which directions the project should
evolve. Though the community did not provide much
source code, it did provide feedback, feature requests and
bug notices .

The business using the Jun library is primary the software
development using Jun. Although Jun is an open source
library and is freely available for other development
organizations and developers, the library has become quite
large, and expertise is necessary to be able to understand
and apply it. The Jun project has an obvious advantage
using the library. The project members have been asked to
develop research application systems using Jun, and to
provide consultation on the use of Jun as well as the use of
underlying models.

3. COMPARISONS
The previous section gives unique characteristics of each
of the four projects. This section examines the four projects
and their open source software development processes
from multiple perspectives, finding characteristics across
multiple projects.

3.1 Uses and Stakeholders
Open source software does not necessarily mean that
everybody who uses the software reads the source code. In
fact, many users simply use the software and may not care
if the source code is available or not.

Figure 1 illustrates what the uses of each open source
software, and who serve as users, readers, and contributors.
Users mean those who use the software. Readers refer to
those who look at the source codes but not necessarily
modify the source, or find bugs and report it. Contributors
refer to those who actually write source code and contribute
to the evolution of the software.

 6

Because GNU programs are for development environments,
many of GNU software users are developers. PostgreSQL is
a database and has been used by end-users. Linux has been
used both by developers and end-users as an operating
system. Jun has been used as a prototyping toolkit and
therefore used by developers, but also by end -users who
uses application software developed on top of the Jun
library.

GNU programs are kept open-source because they are
scientific knowledge to be shared. Their source code is
available so that everybody can look at, modify, and
distribute them. By definition, therefore, readers of GNU
span not only among core members but also among regular
programmers. The Jun program also stands in the similar
position. It has served as a reference model for 3D and
multimedia modeling, having regular programmers as
readers of the program. In contrast, PostgreSQL has source
code open not for everybody to use it; but for having as
many “eyeballs ” as possible to have a look when something
goes wrong. Consequently, the primary readers of the
PosgreSQL programs are core members, and not so many
regular programmers have the chance or the need to read
the source code.

Who actually contributes to the evolution of the source
code is very limited. Most of the open source software is
contributed only by a small number of core members. This
has been found true with major OSSD, such as Apache [14]
and the Linux kernel [17]. Because there is little control over
who does what in Linux, a wider audience will contribute to
the Linux peripheral programs.

3.2 Community
All of the four OSSD projects extensively use mailing lists
as a method of communication among development teams
and among a community of users. GNU, PostgreSQL and

Jun have official Web sites, where people can download
software. However, these Web sites are not so much used
as a communication medium. The PostgreSQL Web site
provides an electronic bulletin board to report problems, but
problems posted on mailing lists has more priority than
information posted on the electronic bulletin board.

All the projects have core members who have leadership
and responsibility in evolving and maintaining the program.
All the projects, except the Linux support project, have
another clear role division for those who play the
intermediary between core members and regular users.
Customers of open-source software often ask us for
support to play this intermediary role, especially in the case
of GNUWingnut and PostgreSQL.

Such roles are determined based on which mailing lists
individuals belong to. Figure 2 illustrates how a community
is formed for each OSSD project. In GNUWingnut, there are
a few core members, who have leadership and
responsibility for the project. Surrounding the core
members are expert programmers, who report bugs,
problems, and questions directly to the core me mber mailing
list. Regular users communicate with those expert
developers and feel less comfortable or feel not allowed to
directly communicate with the core members. In Linux
(excluding the kernel development, which is more like the
GNU development), a small group of core members are
responsible for the program, but everybody else is a regular
user. There seems to be not so much two-way
communication between core members of the Linux
programs and users. Core members post updates and
information on their Web sites; and users may find the
information when necessary by browsing and searching the
Web.

Developers End-Users

GNU PostgreSQL

Linux

Jun

GNU
PostgreSQL

Linux

Jun

Commercial
Use

Prototype
Use

GNU

PostgreSQL

Linux

Jun

Core
Members

Regular
Programmers

Commercial
Use

Prototype
Use

Commercial
Use

Prototype
Use

Core
Members

Regular
Programmers

users readers

contributors

Figure 1: Uses and Stakeholders in the Four Projects

 7

In PostgreSQL, there are six members in the core member
mailing list, and about thirty members in the major developer
mailing list. Who and how many should be on each of the
two mailing lists are strictly controlled; it is usually voted
among the current core members. In the Jun project, there is
a project leader, and a Jun development team mailing list
includes those who occasionally contribute source codes
and bug reports. There is no mailing list for regular users,
but they check Smalltalk Usenet newsgroups to obtain
necessary information.

3.3 Evolution
Because each of the four projects has different objectives,
the evolutionary path of each program also differs. Figure 3
gives a schematic picture of how evolution takes place in
each of the four OSSD.

As stated above, GNU aims to have a single, clean, nice,
well-written version of implementation for a single piece of
functionality. When other people develop their own patch
files for their platforms for the program, these updates need
to be fed-back into the core version.

In Linux, on the other hand, there is much less motivation
and encouragement for feeding back the updates. People
develop patch programs, may or may not post them.
Multiple versions for a single functionality are allowed, and
there can be many branches evolving from the single
version of a program.

In PostgreSQL, it is not so much patch programs that are
fed-back into the core program; but new interfaces and new
requirements for the database system are. New requirements
emerge, members of the major developer team implement the
requirements, then those implementations are incorporated

within the core version when the core team member agrees
to do so.

Finally, the Jun evolves also as a single -version tree. As is
true of many OSSD projects , there are often branches of test
versions created for internal usage [22]. When the project
leader decides that it has been sufficiently tested, the tested
vers ion is released as a public version. In the case of Jun,
every two to four versions are released public .

3.4 Summary of the Comparisons
By comparing the four projects, we have identified that
there are at least three very different motives and objectives
that OSSD projects may have:

• Dissemination of high-quality programs

• Fault tolerance by rapid recovery

• Timely development

The primary goal of both GNU and Jun is to have programs
of high quality to be shared among people. By having the
source code publicly available, they can use the code,
modify the code to adapt to their specific needs, or to
distribute the modified code under some licensing, such as
GPL. This is the motivation for keeping the source code
open.

In the case of PostgreSQL, because it is a database system,
the security and robustness is the must. By having a source
code open, they can use a community of users as many
“eyeballs ” to find bugs and problems as soon as possible.

Finally, in the case of the Linux operating system excluding
the kernel part, developers develop what is necessary, for
instance, a driver software for a particular printer. They put
it on the Web with the source code open, so that if
somebody needs such a program, they can use it. There is

core members

regular users
expert

developers

major
developers

Project
leaderteam

members

core members

core members

regular users
regular users

regular users
GNU Wingnut

PostgreSQL

Linux

Jun

Figure 2: Community in the Four Projects

 8

not so much desire of the developer to have everybody use
his/her program and give feedback to the developer. Rather,
they just make it publicly available . When Linux users need
something, typically they first try to find it on the Web,
wondering if there is anything available to satis fy the need.
If not found, they find something similar, take it, modify it,
and obtain what is necessary. Then they post it on the Web
for further usage; in case somebody else might need it.

4. TOWARD A TAXONOMY
Based on the three points we have identified, we have
constructed a taxonomy representing the three aspects : we
call it archetype, security, and rapidness.

• Archetype. This type of software, represented by GNU
software and the Jun library, is developed so that
people can share the software and modify it if
necessary. The primary objective is to save time and
effort of software developers by not implementing the
same functionality over and over again only because
the source code is “closed.” Being archetype, this type
of software must be developed by expert programmers
and must be of very high quality. Coding standard and
programming styles are usually strictly observed.
There should be a single archetype software program
corresponding to a unit of functionality. Adaptations
and bug-fixes carried out by the user community need
to be fed-back into the evolution of the core version of
the archetype software.

• Security. This type of software, represented by the
PostgreSQL database, is developed as open-source so
that it becomes fault-tolerant. It improves its security
level by having many programmers examine its source
code. As soon as someone reports a fault in its mailing
list, PostgreSQL community starts looking for a cause
and debugging. This type of software is usually very
conservative against evolutionary changes.

• Rapidness. This type of software, represented by the
Linux operating system (excluding the Linux Kernel,
which is developed more like Archetype), needs rapid
and prompt adaptation and modification when
necessary. To take a hardware driver for the Linux OS,
for instance, a programmer develops a driver by
necessity and put it on the Web so that other people
can take and use it. Users try to find program
components on the Web when they face a need for the
software. If they do not find one, they will develop it
and share it via the Web. This type of software
development is a typical bazaar type software
development. Because there can be many alternatives
and different versions for a single functionality,
distribution packages are necessary to identify a
typical set of program components chosen among a
number of available programs.

We do not mean that these three aspects are mutually
exclusive. In fact, many OSSD projects have more than a
single focus, probably covers many focuses. However, an
emphasis on a particular focus determines the project’s
management, development, communication, and
evolutionary styles.

Table 2 summarizes our preliminary attempt to characterize
each type. Because the primary goal for Archetype open-
source software is to disseminate high quality software
serving as a reference model, the control over the process
and product needs to be highly centralized. It needs to be
developed by responsible individuals, mostly by core
members of the project. To maintain the quality, high ly strict
guidelines for coding, formatting, and documentation are
enforced. Feedback is a must both on reporting bugs and
informing of updates and patch programs. The single
version needs to be maintained in order to serve as a
reference model. Users of the archetype program are
encouraged to access the source code, and to use , them,
and redistribute the modified code . Learning is also

feedback

feedback

patchpatch

feedback

feedback

patchpatch

released
public

versions

test
versions

released
public

versions

test
versions

patchpatch

patch

patchpatch

patch

incorporate

incorporate

incorporate

incorporate

GNU Wingnut

PostgreSQL

Linux

Jun

Figure 3: Evolutionary Process of the Four Projects

 9

encouraged by reading such well-crafted source code of
this type.

For the same reason, Security-focused open-source als o
needs centralized control. For systems such as database
systems, robustness is critical, and systems need to be well
maintained and evolved by a set of responsible individuals
including core members, and possibly well -trusted
peripheral developers. Source codes are open so that widely
available developers would help finding faults and fixes.
Feedback on bug reports is a must to enhance the security,
but evolution or modification of the program is not
necessarily reported as a feedback. It might encourage the
core members to refine system requirements specification,
but the attitude towards change in this type of software is
much more conservative and evolution may be slower
compared to other types of open -source software.

Rapidness -focused open source, on the other hand,
focuses on timely development and achievement of
necessary functionality as a community. Control can be
distributed as every individual would implement what
he/she is interested in, and post it on the Web. It is the
user’s responsibility to find what is necessary, and whether
or not trust the program. Feedback for debug and evolution
is nice but not necessary. There is no guarantee that such
feedback is taken into account by the developer, and it
might not be trust-worthy feedback anyway.

Figure 4 illustrates which of the three aspects each of the
four projects we have studied focuses on.

5. DISCUSSIONS
5.1 The Use of A Taxonomy
A taxonomy of OSSD styles allow us to articulate different
causes and explanations for recognized properties of open
source software. Let us take an example argument: open
source means high quality.

For archetype open-source software, high quality means
that the program embodies scientific knowledge to be
shared among mankind. Such programs are created by
highly skilled programmers, and released after rigid

screening by peer expert programmers. The programs are
then shared, followed, and used as a reference by follow
programmers and users.

For security-focused open-source software, high quality
means that bugs are found and eliminated because
programs are exposed to “many eyeballs.” The development
process is highly controlled and a number of “code
inspectors” are available as a community of users.

For rapidness-focused open-source software, high quality
comes from the fact thatprograms are collaboratively
developed by a community of users. The programs may be
going through mutual critiquing, encouragement to
contributions is given as a good “reputation.” Tournament
style evolution takes place and only good contributions
survive over an extended period of time. On the other hand,
this type of “high -quality” is rather opportunistic. This does
not necessarily guarantee how good the programs are. This
sense of high quality is very different from much more rigid
ones for the archetype and security-focused ones. It is,
therefore, pointless to compare the quality of GNU Emacs
program with that of a printer driver for a Linux operating
system posted on the Web both being open-source. Both
are open-source, but they are very different creatures by its
definition.

 The three types of OSSD we have identified through our
case study on the four projectsare by no means exhaustive.
In fact, a large number of “typical” open-source software,
such as Linux kernel, Apache and Mozilla, may not fall into
any of the three types. They have centralized control over
the development, but not as strict as GNU and PostgreSQL.
They have quite clearly specified requirements, and each
user of the community takes a small portion of the
requirements and implements it. We may call this type
“Task-Diffusion,” but before we characterize this type, we
need more case studies to identify common aspects among
those projects.

Table 2: A Taxonomy for OSSD

Focus Objective Control
Developmen

t-by

Feedback
for

debugging
Feedback

on evolution
Versionin

g Code access

Archetype
Reference
model

Centralized Core member Must Must Single
branch

All the time for
modification
and learning

Security Fast fixes Centralized Core member Must Not
necessarily

Single
branch

When a bug is
reported

Rapidness
Timely
development

Distributed Community Not
necessarily

Not
necessarily

Multiple
branches

Only by
interested

 10

5.2 Future Directions
Through conducting the four case studies, we have
encountered commonly recognized issues to be addressed
in pursue of the open source software development.

Support for documentation. All of the project team members
mentioned that a large portion of the development of open
source software involves documentation tasks.
Documentation includes not only preparing install
instructions and manuals, but also posting on the Web,
updating links and related information, and announcing on
the appropriate mailing lists. This type of task is often not
taken into account as a development cost, and existing
project still depends on programmer’s spare time to prepare
the document for their source code. Programmers are not
trained for documentation and therefore are not necessarily
the best people to ask to create such documents. In order to
push OSSD, a role of documentation needs to be more
emphasized and specialized personnel needs to be
assigned to this type of the task.

Support for investigating software patent. Every open source
software program is under some form of license. Lic ensing
requires that algorithms used in the program are neither
patented nor under any conflicting licenses. The task of
investigating software patent is also left with a
programmer’s responsibility. However, it is not an easy task
to do. Specialized support for investigating software patent
is also necessary.

Need for code assessment by a third party. Now that source
code is available, it is theoretically true that everyone can
examines the source code to make sure that the program is
written alright. In reality, however, it is not easy to
understand a large and complex software program that is
written by somebody else. Program reading requires
different types of skills from program writing. It is necessary
to have a sort of a third party, what we may call “software
sommelier,” who performs code assessment for a given
open-source software program.

Learning how to read programs. Much of software
engineering education has focused on teaching students
how to write programs, but not how to read. As one of our
interviewee noted, “reading a source code written by
someone you do not know requires a lot of skill. ” When
OSSD becomes more widely spread, teaching programmers
how to read, not only how to write, will become a necessity
not a luxury.

Incentives for ope n source stakeholders. Common to all the
three types of OSSD, it seems that much more human and
social factors are involved than conventional software
development: a sense of pride, feeling of participation, and
leadership of a community. We need a better
understanding of how virtual organization and community
evolves, and how people formulate a community by looking
at other disciplines such as sociology, anthropology, and
economics. For instance, Gallivan studies the role that trust
plays in OSSD [5]. This type of study needs to be better
integrated with software engineering framework supporting
OSSD.

6. ACKNOWLEDGEMENTS
This research has been partially supported by Information -
processing Promotion Agency (IPA), Japan. We thank the
project leaders and developers who participated in our case
study. Finally, we thank Jonathan Ostwald for his profound
comments and suggestions on earlier versions of this paper.

7. REFERENCES

[1] A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y.
Nisinaka, B. Reeves, A. Takashima, Y. Yamamoto, A
Case Study of the Evolution of Jun: an Object-Oriented
Open-Source 3D Multimedia Library, Proceedings of
International Conference on Software Engineering,
Toronto, CA., IEEE Computer Society, Los Alamos,
CA., pp.524-533, May, 2001.

[2] BSD license, http://www.opensource.org/licenses/bsd-
license.html

[3] Fielding, R.T. Shared Leadership in the Apache Project,
Communications of the ACM, Vol.42, No.4, ACM, New
York, NY, pp. 42-43, April, 1999.

[4] Free Software Foundation,
http://www.gnu.org/fsf/fsf.html

[5] Gallivan, M.J., Striking a Balance between Trust and
Control in a Virtual Organization: A Content Analysis
of Open So urce Software Case Studies, Information
Systems Journal. Blackwell Science, (submitted), 2001.

[6] GNU General Public License, Free Software Foundation,
http://www.fsf.org/copyleft/gpl.html.

 11

[7] GNU Software, http://www.gnu.org/

[8] GNU Philosophy,
http://www.gnu.org/philosophy/philosophy.html

[9] GNU Coding Standards,
http://www.gnu.org/prep/standards_toc.html

[10] GNU Copyleft,
http://www.gnu.org/copyleft/copyleft.html

[11] Godfrey, M.W., Tu, Q., Evolution in Open Source
Software: A Case Study, Proceedings of the 2000
Interna tional Conference on Software Maintenance,
San Jose, California, October 2000.

[12] Jun, http://www.sra.co.jp/people/aoki/jun/

[13] Koch, S., Schneider, G., Results from Software
Engineering Research into Open Source Development
Projects Using Public Data, 2000
http://opensource.mit.edu/papers/koch-
ossoftwareengineering.pdf.

[14] Mockus, A., Fielding, R.T. & Herbsleb, J., A Case
Study of Open Source Software Development: The
Apache Server, Proceedings of International
Conference on Software Engineering, Limerick, Ireland,
ACM Press, pp. 263-272, June, 2000.

[15] Moon, J.Y. & Sproull, L., Essensce of Distributed
Work: The Case of the Linux Kernel, First Monday:
Peer-reviewed Journal on the Internet, 2000,

http://www.firstmonday.org/issues/issue5_11/
moon/index.html.

[16] Open Source Initiative (OSI),
http://www.opensource.org/

[17] O’Reilly, T. Lessons from Open-Source Software
Development. Communications of the ACM, Vol.42,
No.4, ACM, New York, NY., pp. 33-37, April, 1999.

[18] OSI Business Support,
http://www.opensource.org/advocacy/case_for_busin
ess.html

[19] Ousterhout, J., Free Software Needs Proft,
Communications of the ACM, Vol.42, No.4, ACM, New
York, NY., pp. 44-45, . April, 1999.

[20] PostgreSQL, http://www.PostgreSQL.org/

[21] Raymond, E. The Cathedral and the Bazaar,
http://www.ccil/org/~esr/writings.

[22] Torvalds, L. The Linux Edge, Communications of the
ACM, Vol.42, No.4, ACM, New York, NY., pp. 38-39,
April, 1999.

[23] Wall, L. The Origin of the Camel Lot in the Breaskdwon
of Bilingual Unix, Communications of the ACM, Vol.42,
No.4, ACM, New York, NY., pp. 40-41, April, 1999.

High quality

GNU Linux

PostgreSQL
Jun

Rapid
recovery

Timely
development

High quality

Rapid
recovery

Timely
development

High quality

Rapid
recovery

Timely
development

High quality

Rapid
recovery

Timely
development

Figure 4;: Characterizing the Four Projects

 12

