

11 Supporting Expertise Communication in
Developer-Centered Collaborative
Software Development Environments

K. Nakakoji, Y. Ye, Y. Yamamoto

Abstract: Looking at software development as a collective knowledge activity has
changed the view of the role of communication in software development from
something to be eliminated to something to be nurtured. Developer-centered col-
laborative software development environments (CSDEs) should facilitate software
development in such a way, as individual software developers collaboratively de-
velop information artifacts through social interactions. In this chapter, we identify
two distinctive types of communication in software development, coordination
communication and expertise communication, and argue that different sets of
design guidelines are necessary in supporting each type of communication. We
then describe nine design guidelines to support expertise communication based on
the theories of social capital and models of supporting collective creativity.

Keywords: expertise communication; coordination communication; developer-
centered collaborative software development environments; design guidelines

11.1 Introduction

Software development is in essence information-intensive collaborative
knowledge activity. It is about using information, generating information,
and making information artifacts. The wide acceptance of agile processes
and the success of many open source projects provide strong evidence that
human aspects do matter in software development; cognitive and social
processes play essential roles in successful software projects in which in-
dividuals’ creative thinking in using and generating information are nur-
tured. We argue that software engineering environments must be designed
to foster such individuals’ creative knowledge processes, and that collabo-
ration must be supported in the context of individuals’ development activi-
ties. Collaborative software development environments (CSDEs) should be
designed to facilitate and nurture individuals’ creative knowledge proc-
esses. We call this approach developer-centered CSDEs.

Collaboration takes place with or without explicit communication. On
the one hand, software developers regularly engage in collaboration
through artifacts without explicit communication (e.g., by writing com-
ments in code to be read by others). On the other hand, explicit communi-
cation becomes necessary when developers must ask their peers for infor-

To appear in: Collaborative Software Engineering, A. Finkelstein, J. Grundy, A. van den
Hoek, I. Mistrik, J. Whitehead (Eds.), Chap.11, Springer-Verlag, Computer Science Editorial
Series, May, 2010 (forthcoming)

2 K. Nakakoji, Y. Ye, Y. Yamamoto

mation that is otherwise not obtainable. Existing studies have provided
ample evidence that both collocated and distributed software development
teams frequently engage in communication to acquire necessary informa-
tion from peer developers [24, 30, 32].

Such studies have made us aware that there are two distinctive types of
situations in which developers communicate with their peers: one is when
they want to coordinate development activities, and the other is when they
want to acquire knowledge and understanding of a particular aspect of the
software artifact under investigation. A developer engages in communica-
tion with peer developers in both situations by using the same communica-
tion channels (such as face-to-face, email, or chat), but the nature of the
communication in each is quite different. Despite the quintessential differ-
ences in the nature of the goals, challenges, and concerns between these
situations, studies on supporting communication in software development
have not clearly separated the two.

We distinguish the two types of communication by calling the former
coordination communication and the latter expertise communication, and
argue that communication support must be tuned to each type of commu-
nication based on their inherent differences. Different sets of design guide-
lines need to be developed for supporting each type of communication in
developer-centered CSDEs.

In this chapter, we first briefly describe the historical context for the de-
veloper-centered CSDE approach in software engineering research and
discuss why communication must be supported as a first-class object in
CSDEs. We then elaborate the differences between coordination commu-
nication and expertise communication and describe why different guideli-
nes are necessary for supporting each type of communication. We finally
present nine design guidelines for supporting expertise communication.
We have derived these guidelines based on the theories of social capital
[17] and models of supporting collective creativity [37, 38], as well as ex-
isting tools in the research fields of intelligent support, groupware, knowl-
edge management, and organizational memory. We outline each guideline
with theoretical grounds and illustrate each with technical instruments in-
troduced by the existing tools and environments.

11.2 Historical Context: Three Schools of Research
toward Developer-Centered CSDEs

Software engineering research has looked at humans and their collabora-
tions from its very beginning. During the last few decades, however, its

Supporting Expertise Communication in Developer-Centered CSDEs 3

emphases have shifted several times. We identify three distinctive schools
of research in this particular area. Table 11.1 illustrates the differences
among these three schools.

The first school of research, which we call the psychology-centered ap-
proach, has investigated the inner cognitive process of programming by
focusing on the differences between expert and novice (nonexpert) pro-
grammers through a number of psychological studies. That was the time
right after the 1975 publication of Frederick Brook’s The Mythical Man-
Months, which basically says that the man-month is not an appropriate

Table 11.1. Three schools of human-oriented software engineering research

4 K. Nakakoji, Y. Ye, Y. Yamamoto

measure of software development project performance. It was realized that
there is a huge performance difference between good programmers and
not-so-good programmers. This had motivated a large number of studies to
explore what psychological/cognitive factors in programming distinguish-
es experts from novices. The psychology of programming is a research
area that primarily looks at the differences of programming productivity
and efficiency between experts and novices, while studying the benefits as
well as difficulties of mastering programming features (e.g., the if state-
ment design), methods (e.g., object orientation), and usage (e.g.,
mnemonic variable names) [48, 49].

The second school of research, which we call the process-centered ap-
proach, has its focus on the collaborative and managerial aspects of a soft-
ware development project. It views software development as a group activ-
ity, or teamwork, and studies how to improve the capability of a software
development organization, such as process traceability and repeatability
[26]. Interestingly, this second school of research is less concerned with
the programming skills of individual developers. Instead, it focuses more
on the skills of organization. This school advocates that a software devel-
opment process is programmable, and software development should be
treated as assembly lines in which developers produce software by follow-
ing predefined process instructions [39]. Developers take specification
documents and then test specifications as input and produce source code
and test cases as output. Researchers in this second school have primarily
focused on how to help project management in orchestrating and coordi-
nating a number of work pieces that have been produced by a large number
of developers.

The third school of research, which we call the developer-centered ap-
proach, is the focus of our research. It looks at both the cognitive and so-
cial aspects of software development as well as their mutual interactions.
The focus has returned to an individual developer, who is now viewed as
having his or her own area of expertise in terms of a specific context, such
as, the expertise on a piece of source code, the expertise on a certain fea-
ture of the program, the expertise on a certain aspect of the application
domain, or the expertise on a certain programming language. Thus, a
symmetry of ignorance, or asymmetry of knowledge, exists among project
members. They often have to collaborate with peer developers to accom-
plish their own programming tasks, and the success of the whole team de-
pends on such collaborations.

Researchers in the third school explore how to support developers in
such a way that they collectively develop information artifacts. Project
managers are expected to be concerned with how to ensure the creativity

Supporting Expertise Communication in Developer-Centered CSDEs 5

and productivity of individual developers by providing physically, organi-
zationally, culturally, and computationally right environments, rather than
to worry only about how to quantify project performances and how to keep
an eye on the project milestones with regard to the produced artifacts.

Two major factors have fueled the third school of research: open source
communities and agile development methods. Both demonstrate the great
importance of an individual developer’s motivation, engagement, and
communication in software development.

Since a large number of open source software development projects
have emerged – making openly available their source code, related docu-
ments, development history data, and mailing list archives –a number of
field studies have examined how software artifacts evolve through inten-
sive communicative activities. As Augustin et al., who operated Source-
Forge, noted, such data have revealed that successful open source commu-
nity projects “employed a number of practices that were not well
characterized by traditional software engineering methodologies” [4].
Their paper lists mobility of resources, culture of sharing, and peer review
and peer glory as examples of such practices, and labels the practices as
“collaborative software development, or CSD.”

Many of the twelve practices of XP [5], a representative agile method,
are concerned with human and social aspects. By embracing individuals
and interactions over processes and tools in their manifesto, agile software
development methods aim to achieve successful software development by
nurturing developer’s collective creative processes [52].

Communication has long been regarded as an important activity in soft-
ware development. A software engineering textbook published in 1985 by
Fairley, for instance, shows that 37 percent of developers’ time is spent in
job communication and email [16]. However, communication was then re-
garded as an overhead rather than a part of the fundamental activities in
software development. The trend of open source and agile methods has
strongly hinted that communication needs to be treated as a first-class ac-
tivity to be supported. The third school of research now views communica-
tion as something to be nurtured, not to be avoided.

It is very important to note that communication costs in software devel-
opment remain very expensive, even in the eyes of the third school of re-
search. We argue that although supporting communication is important,
encouraging more communication in general should not be the research
goal. Communication problems are caused not only by the lack of commu-
nicative acts, but sometimes by too many communicative acts. For exam-
ple, one case study reported that overwhelming incoming mail messages
resulted in a significant coordination problem [11]. Studies have shown

6 K. Nakakoji, Y. Ye, Y. Yamamoto

that programmers in general prefer to work in a solitary environment with
long periods of uninterrupted time during which they can concentrate [13].
By engaging in creative knowledge work, developers embrace flow expe-
rience, which is a situation “in which attention can be freely invested to
achieve a person’s goals, because there is no disorder to straighten out, no
threat for the self to defended against” [10].

A developer-centered CSDE should first ensure that a developer can fo-
cus on his or her own task itself, and then facilitate easy communication
with peer developers only when it becomes necessary. An important and
often overlooked aspect is that when a developer wants to have communi-
cation, the person who is the recipient of this communication is also a de-
veloper. Supporting communication must carefully balance one devel-
oper’s needs for communication and the other developer’s needs for a
concentrated flow experience.

11.3 Coordination Communication and Expertise
Communication in Software Development

Many studies have observed how and about what developers communicate
with one another during software development. For instance, through a
study on three well-known open source projects, Gutwin et al. have found
that text-based communications (mailing lists and chat systems) are the
developers’ primary sources of acquiring both general awareness of the en-
tire team and more detailed information about people’s expertise and ac-
tivities [21]. In an ethnographic study on an industrial project, Ko et al.
have analyzed what information needs developers face during software de-
velopment [30]. The findings of this study indicate that coworkers were
the most frequent source of information for software developers, and they
were most frequently sought for the questions, “What have my coworkers
been doing?” and “In what situations does this failure occur?”

Such studies demonstrate that two distinctive types of communication
are involved in software development. One is what we call coordination
communication, in which a developer communicates with his or her peers
to discuss and negotiate in order to resolve conflicts or to avoid possible
conflicts among the software components on which they are working. The
structural dependency of software components may reflect “social depend-
ency” among the developers who work on the components in the sense that
they have to coordinate their tasks through social interactions when it is
necessary to resolve perceived conflicts [28, 56]. Tools for supporting co-
ordination communication have been primarily studied in such research ar-

Supporting Expertise Communication in Developer-Centered CSDEs 7

eas as coordinating programmers and programming tasks, through making
developers aware of what other developers are doing; for instance, Ariadne
[14], Palantir [47], or FastDASH [6].

The other type of communication is what we call expertise communica-
tion, in which a developer communicates with his or her peers to ask for
information that is essential for performing his or her own task at hand [32,
58]. This is usually for obtaining knowledge and understanding about the
design and/or behavior of a particular part of the system under develop-
ment. Tools for supporting expertise communication have been primarily
studied in such research areas as knowledge sharing and expert finding,
helping developers ask questions of other developers; for instance, Exper-
tise Recommender [34], Expert Browser [35], and STeP_IN [58].

The rather obvious separation of the two research areas reflects the fact
that these two types of communication have quintessential differences in
nature: in their goals, challenges and concerns. However, existing studies
have not clearly separated and compared the two types of communication
in designing communication support for CSDEs. One of the reasons for
this might have been the fact that developers engage in both types of com-
munication through the same communication channels: by sending email
messages, by starting a chat, or by walking to a coworker’s desk.
However, different types of computational support mechanisms are neces-
sary for the two types of communication due to their different natures.

For instance, a mechanism to find communication partners must be dif-
ferent in coordination communication and expertise communication be-
cause the relation between the developer who starts the communication
and those with whom he or she communicates is different. In coordination
communication, there is a symmetric or reciprocal relation between those
who initiate communication and those who are sought for communication,
with roughly equal amounts of interest and expected benefit. Coordination
communication is a part of impact management, which is “the work per-
formed by software developers to minimize the impact of one’s effort on
others and at the same time, the impact of others into one’s own effort”
[15].

In contrast, expertise communication is characterized by an asymmetric
and unidirectional relation between the one who asks a question and the
one who is asked to help [58]. The benefit is primarily for the information-
seeking developer, while the costs are primarily paid by the information-
provider. Such costs include the cost of paying attention to the information
request, that of stopping his or her own ongoing development task, that of
composing an answer for the information-seeking developer while collect-

8 K. Nakakoji, Y. Ye, Y. Yamamoto

ing relevant information when necessary, and that of then going back to
the original task.

We argue that different types of communication demand different sets
of guidelines in designing communication support in developer-centered
CSDEs. Redmiles et al. presented the continuous coordination paradigm
for supporting software development [42]. The paradigm contains four
principles: (1) to have multiple perspectives on activities and information;
(2) to have nonobtrusive integration through synchronous messages or
through the representation of links between different sites and artifacts; (3)
to combine socio-technical factors by considering relations between arti-
facts and authorship so that distributed developers can infer important con-
text information; and (4) to integrate formal configuration management
and informal change notification via the use of visualizations embedded in
integrated software development environments [42]. Part of this paradigm
supports coordination communication, and some, but not all, of its princi-
ples may also apply to support expertise communication.

In the remainder of this chapter, we present design guidelines for sup-
porting expertise communication in software development. By “expertise
communication,” we do not mean knowledge exchange or knowledge
transfer in a general sense. We use the phrase to refer to activities of a
software developer who seeks, from his or her peer software developers,
information that is essential yet not readily available in existing artifacts to
accomplish his or her task, right in the middle of software development.
The developer communicates with coworkers and asks for information not
for the sake of increasing general knowledge in the abstract but to perform
his or her own immediate task.

11.4 Nine Design Guidelines for Supporting Expertise
Communication

This section presents nine design guidelines for supporting expertise com-
munication.

Guideline #1: Expertise communication must be seamlessly integrated
with other development activities.
A need for expertise communication emerges during the development ac-
tivity when a software developer finds his or her task in need of informa-
tion that is available only through other developers. The developer must be
able to acquire the necessary information in a timely fashion so that he or
she can carry out the current task more effectively and productively in a

Supporting Expertise Communication in Developer-Centered CSDEs 9

fluid manner [57]. Communication with peer developers to seek expertise
should be supported as a continuum of information search tasks from an
information-seeking software developer’s point of view. It needs to be in-
tegrated with the software development environment to minimize the cog-
nitive cost of conscientiously switching to a different application that sup-
ports expertise communication.

Not many existing tools supporting expertise communication consider
this guideline. One of few tools that follow this guideline is STeP_IN_Java
[58]. STeP_IN_Java has the “Ask Expert” feature embedded within the
Java document-browsing interface. Each Java method is accompanied with
the “Ask Expert” button; by pressing the button, the user is connected to a
message-composing interface to write a question about the Java method,
which is then delivered to those developers who have expertise about the
method. The system thus makes expertise communication a natural exten-
sion of browsing Java documents.

Guideline #2: Expertise communication mechanisms should be personal-
ized and contextualized for the information-seeking developer.
Information seeking in software development is an in situ and highly indi-
vidualized action. A developer’s needs for acquiring information from his
or her coworkers arise when he or she is dealing with a specific task in a
development environment. Integration with the development environment
provides the context of the problem with which a developer is dealing.
Such a context should be utilized by an expertise communication mecha-
nism to customize its support to the context and the background knowl-
edge of the developer [12, 57].

Identification of experts should be tuned for who is looking for what.
Expertise is not an absolute attribute but a relative attribute of a developer,
and it changes over time. Answer Garden [2] is an early attempt to identify
UNIX experts based on predefined expertise profiles. The Expertise Re-
commender system [34] mines configuration management logs to identify
experts based on organizational relations to support software maintainers.
The developmental histories of developers (such as activities recorded in
Concurrent Versions System (CVS) repositories, mailing archives, and
written programs) should be used to identify who has the needed expertise
about a particular problem at the particular moment [35, 55]. Having tem-
poral information of the socio-technical context allows the information-
seeker to understand whether a developer has the expertise being sought,
and how he or she has gained it. Such information is not only useful for
identifying the expertise being sought, but also valuable for understanding
the information-seeker’s background so that the system can locate those

10 K. Nakakoji, Y. Ye, Y. Yamamoto

who have mental models similar to those of the information-seeking de-
veloper [55].

Guideline #3: Expertise communication should be minimized when other
types of information artifacts are available.
Resorting to peers as information resources involves not only the informa-
tion-seeking developer but also those developers who are asked to provide
information [27]. Expertise communication is therefore an expensive
means to get a developer’s work done. It should not be promoted as the
first choice; rather, it should be avoided when code, documents, develop-
ment history records, archived previous communications, and/or other arti-
facts that satisfy the information needs are available.

Two mechanisms have been explored to consider this guideline in exist-
ing research: (1) initially leading users to artifacts before providing the
means of expertise communication; and (2) archiving communication re-
sults to avoid unnecessarily repeated communications.

One example is Answer Garden and Answer Garden 2 [1, 2], which first
allow a user to browse a database of commonly asked questions; if the
sought answer is not present, the system “automatically sends the question
to the appropriate expert, and the answer is returned to the user as well as
inserted into the branching network, thus evolving the organizational
memory.”

STeP_IN_Java [58] takes a similar approach by first guiding a develop-
er in attending to the search and browsing interface of Java source code,
documents, and communication archives. Only from the browsing inter-
face does the system allow the developer to compose a question and ask
other developers for information about the browsed artifact. The commu-
nication is again archived and associated with the artifact.

Other mechanisms, such as TagSEA, which is a shared waypoints
mechanism to mark specific locations in Java source code elements or
documents by using social tagging [50], are also useful in guiding devel-
opers to access previously communicated information.

Guideline #4: Expertise communication mechanisms should take into ac-
count the balance between the cost and benefit of an information-seeking
developer and the group productivity.
From the project team’s perspective, expertise communication is a two-
edged sword in solving collaboration problems in software development.
Broadcasting a question allows a developer to find the right people by let-
ting other developers decide for themselves whether to respond [21]. How-
ever, if developers are frequently interrupted to offer help, their productiv-

Supporting Expertise Communication in Developer-Centered CSDEs 11

ity is significantly reduced, resulting in lower group productivity for them
[59].

Attention has been rapidly becoming the scarcest resource in our society
[20]. Attention economy is concerned with the use or the patterns of allo-
cation of attention for the best possible benefits. Following this thread of
thought, the concept of collective attention economy has been proposed
and used as an instrument to analyze the effective use of the sum of the at-
tentions of the members in a group [59].

Our rough estimate of how much attention (in terms of time) is collec-
tively spent in expertise communication in the mailing list of the open
source project Lucene is that more than 60,000 minutes (more than 1,000
hours) were collectively spent every month [59]. In an organizational set-
ting, this collective cost might even outweigh the benefits of knowledge
collaboration; it certainly decreases the overall productivity of the whole
project [41].

Some studies have looked into this problem. Both the Answer Garden
approach [2] and the STeP_IN approach [58] try to reduce the cost in-
curred by expertise providers by limiting the recipients of the question on-
ly to those who are both able (through the expert identification process)
and very likely to be willing (through the expert selection process) to an-
swer the question.

Guideline #5: Expertise communication support mechanisms should con-
sider social and organizational relationships when selecting developers
for communication.
Favorable interpersonal relationships help in communicating expertise due
to preexisting trust and mutual understanding [1]. An arduous relationship
between an information seeker and an information provider often leads to
the failure of expertise sharing [9]. People have very nuanced preferences
concerning how and with whom they like to share expertise and how they
like to maintain control of their social interactions [22].

The theory of social capital provides an analytic framework to under-
stand this decision-making process [17]. Social capital is the “sum of the
actual and potential resources embedded within, available through, and
derived from the network of relationships possessed by an individual or
social unit” [36]. Social capital manifests itself in forms of obligations, ex-
pectations, trust, norms of generalized reciprocity, and reputations.

The feelings of expectation and obligation play important roles during
the process of deciding whether and when to help. Researchers see obliga-
tions and expectations as complementary features [8] incurred during prior
interactions that create value for the community in the future [44]. In other

12 K. Nakakoji, Y. Ye, Y. Yamamoto

words, when B helps A, B would have a reasonable expectation that A will
do something for B sometime down the road, and that A would feel ob-
liged to help B [8].

Answer Garden 2 [1] uses organizational and physical proximities in the
selection process. STeP_IN [58] uses social relationships and nuanced per-
ception of individual relationships. Table 11.2 illustrates the different
strategies used in the selection steps.

Similar to STeP_IN, some tools give high priority to the individual pref-
erences for expertise communication. For instance, ReachOut [45] takes
into consideration factors such as the helper’s motivation to answer ques-
tions on the topic or to participate at this very moment, as well as the
helper’s history of participation. The availability of choices and options
helps the development of favorable attitudes toward expertise communica-
tion [46], and this favorable attitude is critical for expertise communica-
tion.

Guideline #6: Expertise communication support mechanisms should mini-
mize the interruption when approaching those who are selected for com-
munication.
When being approached to provide information for the benefit of another
developer, developers are likely to feel interrupted. Answering or provid-
ing help consumes the time and attention of the helping developers and
distracts them from their own tasks.

An interruption is regarded as an unexpected encounter initiated by an-
other person, which disturbs “the flow and continuity of an individual’s
work and brings that work to a temporary halt to the one who is inter-
rupted” [51]. The cost of interruption includes not only the attention spent
on the interrupting event, but also the disruption of flow and continuity of
the ongoing work [29] and the accompanied work resumption efforts [28].

Expertise communication support tools, therefore, need to feature
mechanisms that would minimize interruption when approaching potential
helping developers. ReachOut [45], for instance, a chat-based tool for peer
support, collaboration, and community building, invites potential helpers
to join a conference chat by pushing the question to a nonintrusive client
on their computer screens. Incoming questions fade in and out until the
user decides to answer.

The field of human-computer interaction has long been studying how to
model interruption between humans and computer agents [25]. Some parts
of the models and findings of such studies should be taken into account to
achieve more effective, less disruptive communication channels in support
of expertise communication in software development.

Supporting Expertise Communication in Developer-Centered CSDEs 13

In an attempt to minimize interruption for other developers by reducing
the number of those who are asked to help, one may not be able to get the
needed information. To address this issue, Answer Garden 2 has proposed
the idea of escalation of support [1]. When no answers are provided from
the selected group for a predefined period of time, the system automatical-
ly expands the recipients of the question to involve more people, larger
groups, and a wider range of areas.

Guideline #7: Expertise communication support mechanisms should
provide ways to make it easier for developers to ask for help.
Developers feel different levels of difficulty and ease, depending on to
whom they ask and through what communication channels. It is easy for
developers to ask peers for information through face-to-face communica-
tion because they know each other, know how to approach each other, and
have a good sense of how important their question is in relation to what the
experts seem to be doing at the moment [23].

As Gerstberger and Allen report, “engineers, in selecting among infor-
mation channels, act in a manner which is intended not to maximize gain,
but rather to minimize loss. The loss to be minimized is the cost in terms
of effort” [19]. Thus, developers tend to choose face-to-face communica-
tion because it would be less likely to be turned down, and to ask for help
from coworkers whom they feel are easy to access rather than from the

Table 11.2. Selection strategies reported in Answer Garden 2 [1], STeP_IN
[58], and other strategies

Answer Garden 2
strategy

STeP_IN
strategy

Other strategies

1. organizational criteria
1-1 keeping it local
1-2 cross department
1-3 last resort

2. load on the sources
2-1 selection based on
regular workload
2-2 selection based on
workload over time

3. performance
3-1 problem compre-
hension
3-2 providing a suitable
explanation
3-3 attitude

1. inter-personal prefer-
ences of an individual

1-1 exclude
1-2 include

2. obligation
2-1 inter-personal obli-
gation (has been helped
by the information seek-
ing developer)
2-2 total-social obliga-
tion (has been helped by
others in the group)

3. external communica-
tion history (has previ-
ously communicated via
email)
4. random selection

- communication recency
- organizational hierarchy
(relative significance and
impact of the information-
seeking developer to po-
tential helpers)
- institutional secrecy
- eager helper (very moti-
vated to help others) [54]

14 K. Nakakoji, Y. Ye, Y. Yamamoto

most appropriate person in some cases. This might end up in the wasteful
use of a small set of “nice” people who keep helping others even if they do
not have the appropriate expertise.

Developers may immediately get the necessary information or may nev-
er get any useful information, depending on how they ask. Rhetorical
strategies, linguistic complexity, and wording choice all influence the like-
lihood of others responding [31] and replying to a question [3, 9].

Studies show that information-seekers demonstrate different asking be-
haviors, depending on whether they are in public, in private, communicat-
ing with a stranger, or communicating with a friend, due to the different
levels of perceived psychological safety in admitting a lack of knowledge
[9]. If every question asked would always go to all members of the mailing
list, the information-seeker would risk giving colleagues the impression
that he or she is rather ignorant and incompetent [18].

The perceived social burden on a potential information-provider may af-
fect how easy it is for an information-seeker to ask a question. A field
study of Answer Garden reports that because the information-seeker’s
identity was not revealed in Answer Garden, the information-seeker felt
less pressure in asking questions and bothering experts [2]. It might also
become easier for an information-seeking developer to ask a question
when he or she knows that the recipients have the option and freedom to
ignore the request.

Reder and Shwab have noted that tactical skill in selecting communica-
tion channels “often determines an individual’s ability to influence and
sometimes control the course and direction of group tasks and impact the
success of particular projects” [41]. Expertise communication support
mechanisms, therefore, need to consider social factors that affect expertise-
seeking behaviors and help software developers in their expertise commu-
nication if they do not have the tactical skill to select the right communica-
tion channel.

Guideline #8: Expertise communication support mechanisms should
provide ways to make it easier for developers to answer or not to answer
the information request.
Developers who receive the request for help in expertise communication
need to decide whether to answer. They may feel different levels of social
pressure, depending on from whom and through which communication
channel the request is coming. For instance, in direct emails, the receiver
bears the interruption cost of the reply or the social burden of taking no ac-
tion [53].

Supporting Expertise Communication in Developer-Centered CSDEs 15

The success of expertise communication should not come at the price of
developers’ reluctance for further participation in future collaboration.
Some developers might get bored by answering repeatedly asked questions
that they deem too simple to be worth their time and expertise, and some
might want to guard their unique expertise to retain their “market value” in
the organization [43]. The goodwill and limited attention of developers
should be economically utilized to achieve sustainable and long-term suc-
cess. They should not be forced into helping just for fear of causing un-
necessary disruptions to the social cohesion and norms of the project team,
which is unlikely to be sustainable.

Unwillingness also leads to lower quality of communication. When
workers are forced into sharing expertise without much willingness, they
often use “verbal and intellectual skills as a defense to keep a person with
a problem from consuming too much of their time,” and their answers are
often “impressive-sounding” but not helpful [9], resulting in a waste of
time for both parties.

Developers may respond to a question not because they want to answer
it, but because they do not want to ignore it. Even though helping is costly,
taking no action may incur a social cost. Saying “no” untactfully to an in-
formation-seeking developer deteriorates the expert’s relation with the
seeker and negatively affects the expert’s social reputation among other
peers because such behavior deviates from social norms [40].

The STeP_IN framework provides a communication mechanism called
a dynamic mailing list; a temporal mailing list is created every time an in-
formation-seeking developer posts a question, with the recipients decided
dynamically [58]. Whereas the sender’s identity is shown to the recipients,
the recipients’ identities are not revealed unless they reply to the request. If
some of the recipients do not answer, for whatever reasons, nobody will
know it; therefore, refusing to help becomes socially acceptable, similar to
“hiding out to get some work done” [13]. If one of the recipients answers
the question, his or her identity is revealed to all members of the dynamic
mailing list. This asymmetrical information disclosure is meant to reinfor-
ce positive social behaviors without forcing others into collaboration.

Guideline #9: Expertise communication channels must be socially aware.
Socially aware communication [40] refers to the transmission of informa-
tion or signals that does not violate social norms. Existing communication
channels include face-to-face, direct email, mailing lists, wikis, bulletin
boards, Internet relay chat (IRC), telephone, or video conferences.

Different communication channels give various degrees of control to
either the information-seeking developer or those who are asked to provide

16 K. Nakakoji, Y. Ye, Y. Yamamoto

information. Decisions need to be made, depending on the goals and social
context, about who should gain the social control of communication.

One prime example of such control is the disclosure of identities of in-
formation-seekers and information-providers. Different tools take different
approaches in designing such disclosure of identities. In a field study of
Answer Garden that had an information-seeker’s identity hidden and an in-
formation-provider’s identity revealed, the seekers felt easier asking and
the information-providers felt more “obliged” and tended to “show off”
their expertise [2]. STeP_IN [58], in contrast, makes a seeker’s identity re-
vealed to those who receive the question, whereas the receivers’ identities
remain hidden unless they answer in a dynamically formulated temporal
mailing list. This design decision is based on the viewpoint that the infor-
mation-provider should be granted more control because the information-
seeker is the main beneficiary and the information-provider is the benefac-
tor.

Cohen et al. have investigated, through field studies of a legal firm, the
phenomena of adversarial collaboration, in which peers who are adversari-
es having opposing goals nonetheless have to collaborate to get their tasks
done [7]. They argue that adversarial collaborations are “the sine qua non
of situations that call for the selective dissemination of information.”
Although software developers in a project are by no means adversaries and
have no opposing goals, they may have different interests and motivations
in their own specific contexts, especially when a project is interorganiza-
tional or involves subcontracted members. Mechanisms for supporting
asymmetric disclosure of information may need to be designed within ex-
pertise communication channels.

11.5 Concluding Remarks

This chapter has argued for a developer-centered CSDE where communi-
cation is considered as a first-class activity in software development. We
identified two distinctive types of communication in software develop-
ment, coordination communication and expertise communication, and
elaborated on their differences.

Communication support mechanisms have features that imply suitable
communication genres [41]. Such features include whether the communi-
cation is one-to-one or one-to-many; whether the communication happens
synchronously or asynchronously; whether the sender and the recipients
are anonymous or identified; whether all the relevant information is dis-
closed symmetrically or asymmetrically among the sender, recipients, and

Supporting Expertise Communication in Developer-Centered CSDEs 17

others; whether the social control of communication is granted to the
sender or to the recipient; whether the mechanism makes it easier for the
information-seeker or the recipient; and what media should be used, such
as text, voice, video, or other types of multimedia, each of which demon-
strates different degrees of archivability and searchability.

Taking the above features into total consideration as well as the distinc-
tive nature of expertise communication in software development, we have
presented a list of nine design guidelines for supporting expertise commu-
nication in software development. These guidelines are interdependent:
following one guideline may also lead to following a few other guidelines,
or following one guideline may conflict with following another guideline.
Each guideline is important in some particular context. In designing exper-
tise communication support mechanisms, one needs to understand what
corporate and organizational culture exists and what types of collaboration
their software projects want to nurture.

Although this chapter has argued to distinguish coordination communi-
cation from expertise communication for supporting communication in de-
veloper-centered CSDEs, it has not been our intention here to develop two
different communication interfaces for developers. Developers presently
do not and probably will not want to distinguish the two; they simply want
to communicate with their peers for a variety of reasons. After identifying
different sets of design guidelines in support of coordination and expertise
communications, the forthcoming research agenda would involve how to
integrate the two mechanisms so that developers would be able to seam-
lessly engage in different types of communications without consciously
switching between the two.

References

[1] Ackerman MS, McDonald DW (1996) Answer Garden 2: merging organiza-
tional memory with collaborative help. In: Proc. of CSCW'96. ACM Press,
New York, pp 97–105

[2] Ackerman MS (1998) Augmenting organizational memory: a field study of
Answer Garden. ACM Trans Info Sys, 16(3): 203–224

[3] Arguello J, Butler BS, Joyce E, Kraut R, Ling KS, Rose C, Wang X (2006)
Talk to me: foundations for successful individual-group interactions in on-
line communities. In: Grinter R, Rodden T, Aoki P, Cutrell E, Jeffries R, Ol-
son G (eds) Proc. of CHI'06, April 22–27, ACM, New York, pp 959–968

[4] Augustin L, Bressler D, Smith, G (2002) Accelerating software development
through collaboration. In: Proc. of ICSE'02, ACM, New York, pp 559–563

18 K. Nakakoji, Y. Ye, Y. Yamamoto

[5] Beck, K (1999) Extreme programming explained: Embrace change.
Addison-Wesley, Reading, MA

[6] Biehl, JT, Czerwinski, M, Smith, G, Robertson, GG (2007) FASTDash: a
visual dashboard for fostering awareness in software teams. In: Proc. of
CHI'07, ACM, New York, pp 1313–1322

[7] Cohen AL, Cash D, and Muller MJ (2000) Designing to support adversarial
collaboration. In: Proc. of CSCW'00, ACM, New York, pp 31–39

[8] Coleman JC (1988) Social capital in the creation of human capital, Amer J
Sociol 94: S95–S120

[9] Cross R, Borgatti SP (2004) The ties that share: Relational characteristics
that facilitate information seeking. In: Huysman M, Wulf V, Social capital
and information technology. The MIT Press, Cambridge, MA, pp 137–161

[10] Csikszentmihalyi M (1990) Flow: the psychology of optimal experience.
HarperCollins, New York

[11] Damian D, Izquierdo L, Singer J, Kwan I (2007) Awareness in the wild: why
communication breakdowns occur. In: Proc. of ICGSE'07, IEEE Computer
Society, Washington, DC, pp 81–90

[12] Davor Cubranic C, Murphy GC (2003) Hipikat: recommending pertinent
software development artifacts. In: Proc. of ICSE'03. Portland, OR, pp 408–
418

[13] DeMarco T, Lister T (1999) Peopleware: productive projects and teams.
Dorset Housing Publishing, New York

[14] de Souza CRB, Quirk S, Trainer E, Redmiles D (2007) Supporting collabo-
rative software development through the visualization of socio-technical de-
pendencies. In: Proc. of GROUP'07, Sanibel Island, FL, pp 147–156

[15] de Souza CRB, Redmiles D (2008) An empirical study of software develop-
ers management of dependencies and changes. In: Proc. of ICSE'08, pp 241–
250

[16] Fairley R, (1985) Software engineering concepts, McGraw-Hill College,
New York

[17] Fischer G, Scharff, E, Ye Y (2004) Fostering social creativity by increasing
social capital. In: Huysman M, Wulf V, Social capital and information tech-
nology. The MIT Press, Cambridge, MA, pp 355–399

[18] Flammer A (1981) Towards a theory of question asking. Psych Res 43: 407–
420.

[19] Gerstberger PG, Allen TJ (1968) Criteria used by research and development
engineers in the selection of an information source. J Appl Psych 52(4):
272–279

[20] Goldhaber MH (1997). The attention economy. First Monday 2(4)
[21] Gutwin C, Penner R, Schneider K (2004) Group awareness in distributed

software development. In: Proc. of CSCW'04, ACM, New York, pp 72–81
[22] Halverson CA, Erickson T, Ackerman, MS (2004) Behind the help desk:

evolution of a knowledge management system in a large organization. In:
Proc. of CSCW'04, ACM, New York, pp 304–313

[23] Herbsleb J, Grinter RE (1999) Splitting the organization and integrating the
code: Conway's law revisited. In: Proc. of ICSE'99, pp 85–95

Supporting Expertise Communication in Developer-Centered CSDEs 19

[24] Herbsleb J, Mockus, A (2003) An empirical study of speed and communica-
tion in globally-distributed software development. IEEE Trans Software En-
gin 29(3): 1–14

[25] Horvitz E, Apacible J (2003) Learning and reasoning about interruption. In:
Proc. ICMI'03, ACM, New York, pp 20–27

[26] Humphrey W (1989) Managing the software process. Addison-Wesley Pro-
fessional: Reading, MA

[27] Illich I (1971). Deschooling society. Harper and Row, New York
[28] Iqbal ST, Bailey BP (2006) Leveraging characteristics of task structure to

predict the cost of interruption. CHI 06, ACM, New York, pp 741–750
[29] Jackson T, Dawson R, Wilson D (2001) The cost of email interruption. J Sys

& Info Tech 5: 81–92
[30] Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated soft-

ware development teams. International Conference on Software Engineering
(ICSE), May 20–26, pp 344–353

[31] Kraut R, Kiesler S, Mukhopadhya T, Scherlis W, Patterson M (1998) Social
impact of the Internet: What does it mean? Commun ACM 41(12): 21–22

[32] LaToza TD, Venolia G, et al (2006) Maintaining mental models: A study of
developer work habits. In: Proc. of ICSE'06, Shanghai, pp 492–501

[33] McDonald DW, Ackerman MS (1998) Just talk to me: a field study of exper-
tise location. In: Proc. of CSCW'98, Seattle, WA, pp 315–324

[34] McDonald DW, Ackerman MS (2000) Expertise Recommender: A flexible
recommendation system architecture. In: Proc. of CSCW'00, pp. 101–120

[35] Mockus A, Herbsleb J (2002) Expertise Browser: A quantitative approach to
identifying expertise. In: Proc. of ICSE'02, Orlando, FL, pp 503–512

[36] Nahapiet J, Ghoshal S (1998) Social capital, intellectual capital, and the or-
ganizational advantage. Acad Mgmt Rev 23: 242–266

[37] Nakakoji K (2006) Supporting software development as collective creative
knowledge work. In: Proc. of KCSE2006, Tokyo, pp 1–8

[38] Nakakoji K, Ohira M, Yamamoto Y (2000) Computational support for col-
lective creativity. Knowledge-Based Systems Journal, Elsevier Science,
13(7–8): 451–458

[39] Osterweil L (1987) Software processes are software too. In: Proc. of
ICSE'87, pp 2–13

[40] Pentland A (2005) Socially aware computation and communication. Com-
puter 38(3): 33–40

[41] Reder S, Schwab RG (1988) The communication economy of the
workgroup: Multi-channel genres of communication. In: Proc. of CSCW'88,
ACM, New York, pp 354–368

[42] Redmiles D, van der Hoek A, Al-Ani B, Hildenbrand T, Quirk S, Sarma A,
Filho RSS, de Souza C, Trainer E (2007) Continuous coordination: a new
paradigm to support globally distributed software development projects.
Wirtschaftsinformatik J, 49: S28–S38

[43] Reichling T, Veith M (2005) Expertise sharing in a heterogeneous organiza-
tional environment. In: Proc. of ECSCW'05, Springer-Verlag, New York, pp
325–345

20 K. Nakakoji, Y. Ye, Y. Yamamoto

[44] Resnick P (2002) Beyond bowling together: sociotechnical capital. In JM
Carroll (ed), HCI in the new millennium, pp 247–272

[45] Ribak A, Jacovi M, Soroka V (2002) Ask before you search: peer support
and community building with Reachout. In: Proc. of CSCW'02, ACM, New
York, pp 126–135

[46] Salancik GR, Pfeffer J (1978) A social information processing approach to
job attitudes and task design. Admin Sci Quart 23: 224–253

[47] Sarma, A, Noroozi Z, van der Hoek, A, (2003) Palantir: raising awareness
among configuration management workspaces. In: Proc. of ICSE'03, pp
444–454

[48] Shneiderman B (1980) Software psychology: human factors in computer and
information systems. Winthrop: Cambridge, MA

[49] Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge.
IEEE Trans Software Eng 10(5): 595–609

[50] Storey M, Cheng L, Bull I, Rigby P (2006) Shared waypoints and social tag-
ging to support collaboration in software development. In: Proc. of
CSCW'06, ACM, New York, pp 195–198

[51] Szoestek AM, Markopoulos, P (2006) Factors defining face-to-face interrup-
tions in the office environment. In: Proc. of CHI'06, ACM, New York, pp
1379–1384

[52] Tomayko JE, Hazzan O (2004) Human aspects of software engineering
(electrical and computer engineering series), Charles River Media, Inc.,
Rockland, MA

[53] Tyler JR, Tang JC (2003) When can I expect an email response? A study of
rhythms in email usage. In: Proc. of ECSCW'03, Helsinki, pp 239–258

[54] van den Hooff B, De Ridder JA, Aukema EJ (2004) Exploring the eagerness
to share knowledge: the role of social capital and ICT in knowledge sharing.
In: Huysman M, Wulf V, Social capital and information technology. The
MIT Press, Cambridge, MA, , pp 163–186

[55] Vivacqua A, Lieberman H (2000) Agents to assist in finding help. In: Proc.
of CHI'00, ACM, New York, pp 65–72

[56] Wagstrom P, Herbsleb J (2006) Dependency forecasting. CACM 49(10):
55–56

[57] Ye Y, Fischer, G (2002) Supporting reuse by delivering task-relevant and
personalized information. In: Proc. of ICSE'02, Orlando, FL, pp 513–523

[58] Ye Y, Yamamoto Y, Nakakoji K (2007) A socio-technical framework for
supporting programmers. In: Proc. of ESEC/FSE'07, ACM, New York, pp
351–360

[59] Ye Y, Yamamoto Y, Nakakoji K (2008) Understanding and improving col-
lective attention economy for expertise sharing. In: Proc. of CAiSE'08, June,
Lecture notes in computer science 5074, Springer, Berlin Heidelberg, pp
167–181

