
Presented at the ACM CSCW Workshop on Supporting the Social Side of Large-Scale Software Development, Banff, Alberta, Canada,
November, 2006.

 1

Supporting Software Development as
 Knowledge Community Evolution

Kumiyo Nakakoji1,2

1RCAST, University of Tokyo
4-6-1 Komaba

Meguro, Tokyo, 153-8904, Japan

kumiyo@kid.rcast.u-tokyo.ac.jp

Yasuhiro Yamamoto1
2SRA-KTL Inc.
3-12 Yotsuya

Shinjyuku, Tokyo, 160-0004, Japan

yxy@kid.rcast.u-tokyo.ac.jp

Yunwen Ye2,3

3Dept. of Computer Science
University of Colorado, Boulder

CB430 Boulder, CO. 80303

yunwen@cs.colorado.edu

ABSTRACT
We view software project as a knowledge ecology consisting of
three interrelated elements: (1) artifacts, (2) individual developers,
and (3) a community of developers. How developers relate with
each other in the community affects how they share knowledge
during the development and therefore impacts the overall quality
of the software system that have to be built through continuous
knowledge collaboration. This paper analyzes this social relation
and its impacts on software development, and presents an
approach to help developers make use of peer expertise by asking
and helping other developers. It then describes the STeP_IN
(Socio-Technical Platform for In situ Networking) framework to
illustrate the approach.

Keywords
Knowledge collaboration, knowledge community, software
development, reuse, community, socially aware communication,
socio-technical approach

1. SOFTWARE DEVELOPMENT AS
KNOWLEDGE COLLABORATION
The development of large-scale software systems is a social
activity, carried out through the collaboration by a group of
software developers. The social aspects of software development
have been studied mostly in the context of how developers and
users work together in designing systems [22], in the
organizational context of a software project [17], or in distributed
software development teams [8]. This position paper in contrast
focuses on the knowledge collaboration of software developers:
how developers can make use of peer expertise in collectively
creating the software system.

Software development is essentially a knowledge construction
process that needs knowledge in a variety of fields, which is
constantly changing. For example, application domains are
subject to rapid change; component libraries are continually
updated; new features and functionalities continue to be
introduced in programming tools and environments. Software
development can therefore be viewed as a learning process and
software developers have to constantly acquire new knowledge.

It may come as a surprise that software developers also need to
learn about the system that they are developing. One may argue
that since the software developer participates in the creation of the
system, he/she should know the system inside out. However,
because large scale software systems are created collaboratively
by many developers, not all developers, if any, would have
complete knowledge about the whole system. At the same time,

With the increasingly widely accepted view of software systems
as evolving entities, the percentage of incremental, continuous
development tasks in software development has risen quickly.
Such software systems need to be continuously developed with
iterative processes to adapt to the ever-changing user requirements
and execution environments. Coupled with the high turnover rate
in software industry, many software developers find themselves
working to make incremental changes to systems that have been
partially developed, or even are operating on a daily base (such as
those web-based systems) .

For software developers, software code is the ultimate knowledge
resource about the system. During the development process, they
intensively engage in recovering “implicit knowledge” embedded
within the code [11]. Due to the essential invisibility of software
code, however, the needs of creating documents that provide high
level descriptions of the code and the design rationale have been
recognized.

Code and documents, however, are often still not enough.
Documents often do not exist or are not in sync with the code.
Moreover, a culture exists in software development that prevents
developers from sharing knowledge over the entire source code.
As LaToza et al. observed, “implicit knowledge retention is made
possible by a strong, yet often implicit, sense of code ownership,
the practice of a developer or a team being responsible for fixing
bugs and writing new features in a well defined section of code”
[11]. Much of the knowledge about the code and the design
decisions remain in the head of developers. This “symmetry of
ignorance” [4] within a development team is neither a problem
nor an accident; it is a matter of fact in software development,
Supporting knowledge collaboration among software developers
thus becomes an important research topic in supporting software
development. This paper first conceptualizes software project as a
knowledge ecology that has intertwined and dynamically
changing relationships among software artifacts (code and
documents), software developers, and developer community,
followed by the analysis of social factors in supporting knowledge
collaboration in software development based on this
conceptualization. Finally, the paper describes the STeP_IN
(Socio-Technical Platform for In situ Networking) framework that
supports knowledge collaboration in software development by
taking into full consideration those identified social factors.

2. THREE ELEMENTS IN SOFTWARE
DEVELOPMENT
We view software project as a knowledge ecology that consists of
three interrelated elements: (1) artifacts, (2) individual developers,
and (3) a community of developers (Figure 1). A group of

 2

developers engaging in software development can be viewed as a
knowledge community, defined as a group of people who
collaborate with one another for the construction of artifacts of
lasting value [2]. In a knowledge community, people are bonded
through the construction of common artifacts.

Figure 1: Software Project as a Knowledge Ecology Consisted of
Three Interrelated Elements

The community element is essential when viewing software
development as collective creative knowledge work. The roles of
individual developers, both formally assigned ones and informally
perceived ones, change over time during a project. The social
relationships among the developers grow through their
engagement in the project, affecting how they collaborate,
communicate, and coordinate with one another, which results in
different ways of sharing knowledge.
Because knowledge sharing is indispensable in software
development, the quality of the resulting software depends not
only on the skills and knowledge of individual developers, but
also on the roles and social relationships among the developers. In
other words, the quality of the software to be developed is
determined not only by the sum of each developer’s knowledge,
but also on the social relationships of software developers that
impacts the sharing of knowledge during the development process.

All three elements constantly evolve during the process of
software development. Artifacts change over time throughout the
development. Individual developers—or, more precisely, what
individual developers know—grow by gaining experience through
the engagement with artifacts and peer developers. The
community of developers changes when new developers join, old
developers leave, and both the assigned and perceived roles of
members change.

Existing studies on understanding and supporting software
evolution have primarily focused on the evolution of artifacts.
More recent work has started to look at how individuals change
through learning about the system. People learn by reading source
code and documents, and they learn by asking peers questions.
They also learn by solving new problems and experiencing
unfamiliar situations. Their old knowledge is replaced with new
knowledge and is restructured during the development process.
In contrast, not much has been studied on the aspects of the
evolution of the developer community in the context of software
development [15]. A community evolves through individual
activities in software development that result in either the change
of software artifacts or the individual growth of knowledge about
the system. This paper views the evoluationary process of a
community from the following three relationships (Figure 2).

(1) The relationship of an individual with artifacts. How one
relates with artifacts is concerned with what knowledge, expertise,
and experience the individual has on what artifacts. This

information is useful in identifying a set of people who are likely
to have expertise with a certain artifact.

(2) The relationship of an individual with other developers. How
one relates with other individuals impacts social relationships
among developers. This information helps a developer determine
whom to ask for help about a certain artifact as well as decide
whether and how to respond to a question being posed by an asker
(Figure 3).
(3) The relationship of an individual with the community as a
whole. How one relates to the community is concerned with that
individual’s role within the community: whether he/she is a
peripheral member, a core member, or a member in between. This
relationship helps a developer decide how much he/she should
contribute to the community by gaining trust and social reputation
within the community. One’s role evolves within a community
through legitimate peripheral participation [21]. By looking at
how and what a developer’s peers who are closer to the core of
the community do within the community, the developer gradually
acquires skills through learning, and develops his/her identity
within the community.

Figure 2: Three Aspects of the Community's Evolutionary Process

3. SOCIAL FACTORS IN SOFTWARE
DEVELOPMENT
To support software project as a knowledge ecology that consists
of the interrelationship among software artifacts, individual
developers, and developer community, we have focused on the
following aspect: how to help developers make use of peer
expertise in development activities.

A number of researchers have already recognized the needs of
using the expertise of other software developers. Berlin has found
that expert developers are experts not only because they have
more expertise but are able to use other experts more [1]. Several
systems, notably Expertise Recommender [12] and Expertise
Browser [13] that help software developers to find experts, have
been proposed in the past years.

Finding experts, however, does not necessarily lead to the
acquisition of their expertise [23]. As knowledge resources,
experts are different from other resources that are things. “A thing
is available at the bidding of the user—or could be—whereas a
person formally becomes a skill resource only when he consents
to do so, and he can also restrict time, place, and method as he
chooses” [9].

Thus, when peers’ expertise becomes critical resources for a
programming task, simply knowing who has the expertise is not
enough. The expertise seeker (i.e., asker) needs to establish a
communication channel with the potential expertise providers (i.e.,
helpers) and asks the question. The expertise providers have to
consent to engage in the communication with the asker to share
their expertise. The communication channels used, the contents of
the question and answer, the ways the questions is asked and the

 3

answers provided, as well as the timings of questioning and
asking depend on a set of perceived social variables.

Awareness. Because asking a question implies that the asker is
missing some knowledge, the asker needs to take a risk of looking
ignorant. Studies show that askers demonstrate different asking
behaviors when they are in public or in private or communicating
with a stranger or with a friend due to the different levels of
feeling psychological safety of admitting the lack of knowledge
[3]. Research has also shown that previous social interactions
between an asker and a helper leads to easier quality judgment,
and helps the interpretation of answers [10].

Access. Social factors in accessing expertise from peers include
how and when an asker asks for help from a potential helper. A
study has concluded that collocated developers feel socially
comfortable to initiate contact because they know each other,
know how to approach them, and have a good sense of how
important their question is related to what the experts seem to be
doing at the moment [8]. Such social cues are heavily used in
face-to-face communication through informal interruptions among
software development project team members [11]. Rhetorical
strategies, linguistic complexity and word choice of the question
all influence the likelihood of others responding to a question [10].
Making a personal appeal (e.g. “I need help”) in the question
results in better and faster responses than making non-personal
appeals (e.g. “I have a problem that might be of interest to you”)
[3]. The expectation of how soon a help would come has been
found to be shaped by the history of interactions with the other
party [20].
Interruption. Answering, or providing help, consumes the time
and attention of the helpers and interrupts their primary task. An
interruption is regarded as an unexpected encounter initiated by
another person, that disturbs “the flow and continuity of an
individual’s work and brings that work to a temporary halt to the
one who is interrupted” [19].

Collective attention cost. In addition to the cost of the helpers,
considerable collective cost could also be incurred. Mailing lists
have been heavily used as a means for mediating peer-to-peer
knowledge sharing in software development. All the people who
have received the question through a mailing list would at least
spend some attention about the question before they decide not to
answer. When the number of people who receives the question
becomes large, the collective attention consumed also becomes
considerably large. Attention is quickly becoming the scarcest
resource in our society [7].

Social capital. Upon receiving a question, the expert developers
need to decide whether and how to engage in collaboration with
the asker by expending their precious time and contributing their
expertise. This decision is primarily based on their perceived
social relationship both with the asker and with the social
environment at large. The theory of social capital provides an
analytic framework to understand this decision-making process
[5]. Social capital is the “sum of the actual and potential resources
embedded within, available through, and derived from the
network of relationships possessed by an individual or social unit”
[14]. It is regarded as important as financial capital and
intellectual capital for an individual as well as a social
organization because it would promote cooperation and reduce
transaction cost [6]. While helping is costly, taking no action also
incurs social cost. Saying “no” untactfully to an asker deteriorates
the expert’s relation with the asker, and affects negatively the

expert’s social reputation among other peers because it deviates
from social norms [18].

4. AN APPOACH: STeP_IN
We have developed the STeP_IN (Socio-Technical Platform for
In situ Networking) framework to help developers to use peer
expertise based on the above considerations [23]. The goal of
STeP_IN is twofold: (1) to increase the ease of accessing peer
experts by asking questions, and at the same time (2) to reduce the
total cost of experts being interrupted and that of providing help.
We try to achieve this goal by creating an ephemeral knowledge
network, called a Dynamic Community (DynC) to connect an
expertise seeking developer with other developers who have not
only technical expertise but also good social relations with the
expertise seeker, and support their collaboration with socially
aware communication mechanisms.

STeP_IN presupposes a knowledge workspace, which consists of
a group of developers, artifacts (their code and related documents),
and the three types of relations among them (Figure 3): artifact-
artifact, developer-artifact (a developer’s technical profiles), and
developer-developer (a developer’s social profile). The
framework uses those relations to retrieve relevant artifacts for a
developer’s task at hand, and then to create a DynC for the
developer first by identifying experts for the task, and then by
selecting experts based on the developer’s social profile.

Figure 3: Knowledge Workspace and Relations in STeP_IN

The framework is instantiated in Step_IN_Java (SIJ) for
supporting Java developers (see Figure 4) [23]. In SIJ, a Java
developer can (1) search for methods, (2) read documents and
examples, and (3) ask questions about a specific method to
selected experts through the formation of a DynC. See [23] for
more details.

Figure 4: STeP_IN_Java

By using SIJ, developers do not need to have the awareness of
who are the experts for the problem that he/she has in seeking for
peer expertise. Potential shame of ignorance in asking a question
is reduced because only experts with established good
relationships are selected. The established social relationships also
increase the likelihood for the asker to obtain timely responses
because such social relationships are likely to motivate the experts
to actively engage in communications with the asker.

 4

A DynC in SIJ complies with the principle of asymmetrical
disclosure of information. The membership is not revealed unless
one explicitly posts a reply to the DynC. A member, therefore,
may leave the DynC (a social equivalent of saying “no”) at any
moment without being publicly known. Due to this principle, no
participation does not constitute the violation of social norms,
which is punishable by the “iron hand of social pressure” of
enforcing required individual behavior in a social unit [18]. On
the other side, because replying to the DynC reveals the identity
of the sender of the message, the DynC members’ contribution is
publicly acknowledged and can lead to the improvement of
motivation [5].

This socially aware mechanism that allows unwilling peer
developers exit socially safely has two implications. The
remaining peers are the participants of willing, and hence the
expertise sharing becomes more effective. From the perspective of
the asker, knowing that other developers could easily exit, he/she
feels less pressured to post a question because the availability is
controlled by the experts.

Unlike a mailing list, because questions are only sent to DynC
members, other developers who have neither interest nor expertise
on the topic are not disturbed. The collective cost of attention and
interruption is reduced by the reduction of the number of receivers.

5. Summary
This paper analyzed the social factors that affect the knowledge
sharing practice during the software development from the
perspective of viewing software project as evolving knowledge
ecology. The STeP_IN framework was described to support the
use of peer expertise with socially aware mechanisms. The
framework was illustrated in the SIJ system that supports
knowledge collaboration among Java developers.

6. REFERENCES
[1] L.M. Berlin, "Beyond Program Understanding: A Look at

Programming Expertise in Industry," in Empirical Studies of
Programmers: Fifth Workshop, C.R. Cook, J.C. Scholtz, and
J.C. Spohrer, Eds. Palo Alto, CA: Ablex Publishing
Corporation, 1993, pp. 6-25.

[2] Cosley, D., Frankowski, D., Terveen, L., Riedl, J., Using
Intelligent Task Routing and Contribution Review to Help
Communities Build Artifacts of Lasting Value, Proc. CHI06,
ACM Press, pp. 1037-1046, 2006.

[3] R. Cross and S.P. Borgatti, "The Ties That Share: Relational
Characteristics That Facilitate Information Seeking," in
Social Capital and Information Technology, M. Huysman
and V. Wulf, Eds. Cambridge, MA: The MIT Press, 2004, pp.
137-161.

[4] Fischer, G., “Symmetry of Ignorance, Social Creativity, and
Meta-Design,” Knowledge-Based Systems Journal, Elsevier
Science B.V., Oxford, UK, Vol. 13, No. 7-8, pp. 527-537,
2000.

[5] G. Fischer, E. Scharff, and Y. Ye, "Fostering Social
Creativity by Increasing Social Capital," in Social Capital, M.
Huysman and V. Wulf, Eds., 2004, pp. 355-399.

[6] F. Fukuyama, "Social Capital and Civil Society," presented
at IMF Conference on Second Generation Reforms,
Washington, DC, 1999.

[7] M.H. Goldhaber, "The Attention Economy," First Monday,
vol. 2, 1997.

[8] J. Herbsleb and A. Mockus, "An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development," IEEE Transactions on Software Engineering,
vol. 29, pp. 1-14, 2003.

[9] J.D. Herbsleb and R.E. Grinter, "Architectures, Coordination,
and Distance: Conway's Law and Beyond," IEEE Software,
vol. 1999, pp. 63-70, 1999.

[10] I. Illich, Deschooling Society. New York: Harper and Row,
1971.

[11] R.E. Kraut, W. Scherlis, M. Patterson, S. Kiesler, and T.
Mukhopadhyay, "Social Impact of the Internet: What Does It
Mean?" Communications of the ACM, vol. 41, pp. 21-22,
1998.

[12] T.D. LaToza, G. Venolia, and R. DeLine, "Maintaining
Mental Models: A Study of Developer Work Habits,"
presented at Proceedings of International Conference on
Software Engineering, Shanghai, 2006.

[13] FD.W. McDonald and M.S. Ackerman, "Expertise
Recommender: A Flexible Recommendation System
Architecture," Proceedings of CSCW 2000, 2000.

[14] A. Mockus and J. Herbsleb, "Expertise Browser: A
Quantitative Approach to Identifying Expertise," in
Proceedings of ICSE02. Orlando, FL, 2002, pp. 503-512.

[15] J. Nahapiet and S. Ghoshal, "Social Capital, Intellectual
Capital, and the Organizational Advantage," Academy of
Management Review, vol. 23, pp. 242-266, 1998.

[16] Nakakoji, K., Ohira, M., Yamamoto, Y., Computational
Support for Collective Creativity, Knowledge-Based Systems
Journal, Elsevier Science, Vol. 13, No. 7-8, pp. 451-458,
December, 2000.

[17] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye,
Y., Evolution Patterns of Open-Source Software Systems and
Communities, Proc. IWPSE2002, ACM Press, Orlando, FL,
pp. 76-85, May, 2002.

[18] A. Pentland, "Socially Aware Computation and
Cmmunication," Computer, vol. 38, pp. 33-40, 2005.

[19] M.P. Robillard, W. Coelho, and G.C. Murphy, "How
Effective Developers Investigate Source Code: An
Exploratory Study," IEEE Transactions on Software
Engineering, vol. 30, pp. 889-903, 2004.

[20] A.M. Szoestek and P. Markopoulos, "Factors Defining Face-
to-Face Interruptions in the Office Environment," in
Proceedings of Conference on Human Factors in Computer
Systems, 2006, pp. 1379-1384.

[21] J.R. Tyler and J.C. Tang, "When Can I Expect an Email
Response? A Study of Rhythms in Email Usage," in
Proceedings of the Eighth European Conference on
Computer Supported Cooperative Work (Ecscw2003).
Helsinki, 2003, pp. 239-258.

[22] Wenger, E., Communities of Practice － Learning, Meaning,
and Identity. Cambridge, UK: Cambridge University Press,
1998.

[23] C. Westrup, "On Retrieving Skilled Practices: The
Contribution of Ethnography to Software Development," in
Social Thinking: Software Practice, Y. Dittrich, C. Floyd,
and R. Klischewski, Eds. Cambridge, MA: MIT Press, 2002,
pp. 95-110.

[24] Y. Ye, Y. Yamamoto, K. Nakakoji, Helping Programmers
through In Situ Networking of Peer Expertise, ICSE 2007
(submitted).

