
SOMETHINGit : A Prototyping Library for  
Live and Sound Improvisation 

Tomohiro Oda1     Kumiyo Nakakoji1      Yasuhiro Yamamoto2 
1Key Technology Laboratory 

Software Research Associates, Inc. 
Tokyo, Japan 

2Precision and Intelligence Laboratory 
Tokyo Institute of Technology 

Yokohama, Japan 
tomohiro@sra.co.jp        kumiyo@acm.org      yxy@acm.org 

 
Abstract—Live programming can be considered an interaction 

with incomplete code. Dynamic languages embrace the similar 
style of programming, such as pair programming and 
prototyping in a review session. Static languages require a certain 
degree of completeness of code, such as type safety and 
namespace resolution. SOMETHINGit is a Smalltalk library that 
combines dynamic Smalltalk and static Haskell and VDM-SL. 
SOMETHINGit enables programmers to write incomplete but 
yet partially mathematically sound programs by five levels of 
bridging mechanisms. 

Index Terms—Live Programming, Prototyping, Smalltalk, 
Sketch 

I. INTRODUCTION 
In live programming, a programmer or a performer shares a 

transient situation in programming or performance with co-
workers or audiences. Because the act of live programming is 
an on-going process of producing code, the code is always 
incomplete during the session. Incomplete code is the artifact at 
hand for a live programmer. 

The development of a software system at large deals with 
both the world of making and that of using [1]. The world of 
making is concerned with molding, constructing and building. 
The world of using is concerned with engaging, experiencing, 
and interacting-with. The world of making and the world of 
using contact with each other at the execution of programs. 
Live programming is a unique situation, in which the world of 
making is identical to the world of using. In contrast, the most 
industrial programming tasks separate the two. 

Pair programming in Agile development and prototyping in 
a review session can be seen as approaches to bridge the world 
of making and the world of using. For example, prototyping in 
a review session with a customer representative involves 
writing pieces of code when the customer representative 
describes the situation of using the system. In such sessions, it 
is not very important to make the code complete. It is, instead, 
essential to make it “work” at the moment. During a live 
programming session, the working code is hot-fixed without 
halts, and yet, such incompletely hot-fixed code must continue 
running. The edit-compile-run cycle could become 
disadvantage when the cycle is exposed to a live programmer 
or a live performer. 

Another important property of languages for Live, Pair, or 
Prototype programming is to have intuitive user interfaces. The 

Smalltalk environment [2] is a pioneer of graphical user 
interfaces (GUIs) directed toward Dynabook [3] where 
everyone at any age can enjoy live learning and live 
programming. 

II. IMPROVISATIONAL DESIGN IN SOFTWARE DEVELOPMENT 
Acts of design in early stages, such as interface sketching, 

require a close interaction between a designer and a design 
artifact [4][5]. Sketches are then narrowed down to more 
didactic, assertive and refined representations such as 
prototypes and blueprints. Noncommittal suggestions and 
tentative proposals are grounded to depictive descriptions and 
specific tests [6]. Improvisations emerged in software 
development are thus subject to be recorded and grounded to 
specific and sound design decisions. 

Design also requires the other direction. Specific and sound 
design artifacts, such as design patterns, domain-specific 
knowledge, and the repertoire of reusable components, often 
need to be referred in improvisation, yet keeping freedom from 
unnecessary constraints.  Improvisation and soundness are not 
binary choices, but depend on each other. 

III. THE SOMETHINGIT LIBRARY 
SOMETHINGit is a Smalltalk library to communicate with 

the REPL (Read-Eval-Print Loop) interpreters of different 
languages. The library currently supports Haskell (GHCi) [7] 
and VDM-SL(VDMJ) [8][9]. 

Smalltalk and LISP are the two prominent programming 
languages (as well as environments and libraries) that 
pioneered interactive and dynamic programming. Many 
essences of the eXtreme Programming practice came from the 
Smalltalk community including pair programming and 
prototyping in customers’ review. 

Smalltalk and LISP employ dynamic typing which bring 
flexibility and simple yet strong meta-expressiveness and 
reflection mechanisms. For example, it is a common habit 
among Smalltalk programmers to run a piece of code with a 
not-implemented-yet method; they write the method only when 
the system execution calls the method.  The code still continues 
running after defining the new methods. 

On the one hand, such flexibility in terms of 
implementation and execution gives positive impacts to the 
improvisational style of coding. On the other hand, the flexible 

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

11



ordering of implementation and execution often sacrifices the 
soundness of the code, such as type safety and static bindings. 

Smalltalk programmers make heavy use of the Workspace, 
in which programmers write a piece of Smalltalk code and 
make notes in a natural language. A programmer opens a 
Workspace, writes some pieces of code among notes, and 
selects a piece of code to perform DoIt, PrintIt or InspectIt to 
execute the code. A Workspace gives a flexible choice of 
orders of implementation and execution to the programmer 
than REPL interpreters. 

SOMETHINGit is a library to use more sound and rigorous 
languages like Haskell and VDM-SL in the flexible Smalltalk 
language/environment/library (See Table 1). A programmer 
may write pieces of Haskell code among Smalltalk code and 
evaluate a piece of Haskell code specified by the user with GUI. 
Another programmer may also call a VDM function from 
Smalltalk code. It is also possible to manipulate states of a 
running VDM-SL specification with GUI. SOMETHINGit 
makes it possible to write soundness-critical code in Haskell or 
VDM-SL and flexibility-critical code in Smalltalk. 
SOMETHINGit has been designed to provide interactive, 
flexible and improvisation programming interfaces, both API 
and GUI, to Haskell and VDM-SL.  

 
 

IV. BRIDGING: FIVE LEVELS OF BINDINGS 
SOMETHINGit has the following five levels of interfaces 

between Smalltalk and Haskell. The five levels of interfaces 
allow programmers to mix code in different languages rather 
than to make a binary choice between improvisation or 
soundness. There is also no need to split the whole program 
into the improvisation part and the soundness part. A 
programmer can mix improvisation and soundness through 
continuous gradation.  

We have also developed a UI prototyping environment 
(Lively Walk-Through) by combining Smalltalk UI objects and 

VDM-SL executable specifications based on SOMETHINGit. 
Using Lively Walk-Through, UI designers and formal methods 
engineers can collaboratively build a UI prototype in a live 
setting. The bindings between Smalltalk UI objects and VDM-
SL operations and functions are built at the binding level 3 
(closure-like objects) described below. 

 

A. Level 1: GUI (Workspace and Browsers) 
SOMETHINGit adds “Haskell It” and “inspect Haskell It” 

items to the context menu of standard Smalltalk Workspace. As 
the name says, HaskellIt evaluates and prints the result on the 
Workspace. In this paper, the result of an evaluation is denoted 
after the è symbol. 

 
take 2 [4, 4, 1] è [4, 4] 

 

B. Level 2: The  “eval” Function 
The SIExternalInterpreter class and its concrete subclasses 

provide “evaluate:” and similar messages. 
 

SIHaskell evaluate: ‘take 2 [4, 4, 1]’ 
è anOrderedCollection (4 4 ) 

 

C. Level 3: Closure-like Objects 
“‘take’ asHaskellExpression” creates a Smalltalk closure-

like object of the Haskell’s take function, which answers to the 
“value,” “value:,” and “value:value:” family of messages. The 
closure-like object can deal with higher order functions. 

 
‘take’ asHaskellExpression 

value: 2 
value:#(4 4 1) asOrderedCollection 

è anOrderedCollection ( 4 4) 
 
take := ‘take’ asHaskellExpression. 
take2 := take value: 2. 
take2 value: #(4 4 1) asOrderedCollection 
è anOrderedCollection ( 4 4) 
 

D. Level 4: Object-Value Mapper 
SOMETHINGit comes with the following mapping 

between Haskell values and Smalltalk objects (Table 2). 
The mapping can be overwritten or extended by a user 

programmer. 
 
For example, Haskell’s list “[4, 4, 1]” will be mapped to an 

OrderedCollection object with 4, 4 and 1 in the order. 
 

SIHaskell evaluate: ‘[4, 4, 1]’ 
è anOrderedCollection (4 4 1 ) 

 
Please note that the identity of Object which is mapped to 

SIObject in Haskell is kept, as demonstrated below. 
 
 

Table 1: A summary of comparison among  
Smalltalk,  Haskell and VDM-SL 

 
Name Smalltalk Haskell VDM-SL 
Style Dynamic 

environment 
Compiler + 
REPL 
interpreter 

IDE with a 
REPL 
interpreter 

Paradigm Object- 
Oriented 
Programming 

Functional 
Programming 

Formal 
Methods 

Type 
system 

Dynamic 
typing 

Static typing Static 
typing 

UI GUI CUI GUI (CUI 
interpreter) 

Motto Dynamism Purity Rigor 
Code base Image File File 
Runtime IDE=Runtime Binary code Animation 

on IDE 
 

12



 
 

| hcode enlist p list | 
hcode := SIHaskell source: ‘enlist x = [x]’ 
enlist := ‘enlist’ asHaskellExpressionIn: hcode. 
p := 1@2. 
list := enlist value: p. 
list first == p 

è true 
 
A Point instance “1@2” is passed to Haskell, is put into a 

list, and is returned to the Smalltalk side as a member of the 
resulting OrderedCollection object. The first member is tested 
identical to the point object, resulting in “true”, which means 
the point object kept the identity even though it traveled to the 
Haskell side and then came back to the Smalltalk side. 

E.  Level 5: Callback (Message Sending from Haskell) 
An object translated into SIObject can send a message in 

Haskell and the message is evaluated in Smalltalk. 
 

| hcode at | 
hcode := SIHaskell prelude. 
hcode program: 
    'let at array index = messageSend array 
"at:" [index] :: IO Int'. 
at := 'at' asHaskellExpressionTyped: '[Int]-
>Int->IO Int' in: hcode. 
at value: #(4 4 1) value: 3 
è 1 

 
In the above example, the “at” function is defined in 

Haskell using the “messageSend” function which performs a 
Smalltalk’s message sending to the first argument namely 
“array”. The Haskell “at” function is wrapped in the Smalltalk 
side by the “asHaskellExpressionTyped:” message. The 
Smalltalk code then evaluate the “at” function with two 
arguments: the array “#(4 4 1)” and the index “3”. The Haskell 
“at” function then sends the “at:” message to the first argument 
(Smalltalk’s #(4 4 1)) with the argument “3”. The result of the 
message sending is the third member of the array, in this case,  
1. The “messageSend” function is typed as an IO monad 
because its evaluation involves communication with the 

Smalltalk side. The result of message sending in Smalltalk is 
impure and thus it is reasonable to put it into an IO monad. 

V. IMPLEMENTATION 
The SOMETHINGit library is built upon the Smalltalk 

system and communicates with external OS processes. Table 3 
shows the summary of the operating environment. 

Major components of the SOMETHINGit library are as 
follows.  
• Smalltalk Library 

• Process management 
SIExternalInterpreter 
 SIHaskell 
 SIVDM 

• Object-Value mapper 
SIParser 
 SIHaskellParser 
 SIVDMParser 
SIPrinter 
 SIHaskellPrinter 
 SIVDMPrinter 

• Value container 
SIHaskellExpression 
SIVDMExpression 

• User interface 
Workspace (HaskellIt and inspectHaskellIt) 
SIVDMBrowser 
  

• Haskell Library 
• Type 

SIObject (in Haskell) 
• Function 

messageSend 
 

VI. EXAMPLE: FIZZBUZZ GAME 
What follows is a piece of Haskell code for the famous 

“FizzBuzz” game. 
An interactive FizzBuzz GUI can be mocked up in an 

interactive manner. 
 
 

data FizzBuzz = Fizz | Buzz | FizzBuzz | Number Int 
fizzbuzz :: Int -> FizzBuzz 
fizzbuzz x 
    | x `mod` 15 == 0 = FizzBuzz 
    | x `mod` 5 == 0 = Buzz 

Table 3: SOMETHINGit Overview 
 

Operating System Linux or Mac OS X 
Smalltalk System Squeak 4.3 or highter 

Pharo 1.4 or highter 
Required Smalltalk 

Packages 
OSProcess 

Haskell interpreter GHCi 7.4.1 or higher 
VDM-SL interpreter VDMJ 2.0.1 

 

Table 2: Mapping between Haskell Values and Smalltalk objects 
 
Language Smalltalk Haskell 

List OrderedCollection list 
Set Set Data.Set 

Map Dictionary Data.Map 
Algebraic Data 

Type 
SIAlgebraicData * 

Integer Integer Int 
Decimal Float Fraction 

Char Character Char 
String String String 

Smalltalk Object Object SIObject 
 

13



    | x `mod` 3 == 0 = Fizz 
    | otherwise = Number x 

 
The fizzbuzz function can be wrapped as a Smalltalk 

closure-like object by 
 

| hcode | 
hcode := SIHaskell source: ‘ 
data FizzBuzz = Fizz | Buzz | FizzBuzz | Number Int 
deriving Show 
fizzbuzz :: Int -> FizzBuzz 
fizzbuzz x 
    | x `mod` 15 == 0 = FizzBuzz 
    | x `mod` 5 == 0 = Buzz 
    | x `mod` 3 == 0 = Fizz 
    | otherwise = Number x’. 
fizzbuzz := ‘fizzbuzz’ asHaskellExpressionIn: hcode. 

 
Now the fizzbuzz closure can be evaluated by Smalltalk’s 

value: message. 
 

fizzbuzz value: 1 è Number 1 
fizzbuzz value: 3 è Fizz 
fizzbuzz value: 30 è FizzBuzz 

 
A GUI for the game can be built with the Morphic 

Framework (see Fig.1). 
 

 
Fig 1. A GUI for FizzBuzz game 

 

VII. RELATED WORK 
Squeak etoys [10] is a programming environment for 

children based on Squeak Smalltalk environment. Every 
“object” placed on the environment is programmable by 
choosing, arranging and editing visual tiles. 

Scratch [11] is another visual programming environment 
for children in the spirit of turtle graphics and constructionism 
of the LOGO language. The early version of Scratch was built 
on Squeak Smalltalk.  

While both Squeak etoys and Scratch are instance-based 
intuitive programming environment for creative and 
constructive learning, SOMETHINGit has been built to aim at 
supporting programmers/performers to build live and sound 
prototypes. 

Nielsen et al. [7] combined VDM specifications with Java 
code. Their approach as well as SOMETHINGit use VDMJ as 
a VDM evaluation engine. While their implementation aims at 

graphical prototyping and integration between models and 
existing implementation, SOMETHINGit is designed toward 
instance-oriented prototyping with the spirit of nurturing the 
dynamic nature of a Smalltalk environment. 

 

VIII. CONCLUDING REMARKS 
Live programming requires both improvisation and 

soundness of resulting programs, which industrial development 
often demands. SOMETHINGit is a Smalltalk library to 
communicate with the REPL interpreters of different languages. 
SOMETHINGit combines the both improvisation supported by 
dynamic and flexible Smalltalk, and soundness brought by 
static typing. SOMETHINGit provides the five levels of 
interfaces that spans over the user interface level and the 
coding level. 

ACKNOWLEDGEMENTS 
The authors would like to thank Kazuhiko Yamamoto, 

Peter G. Larsen and Nick Battle for their valuable advices on 
technical elements implemented in SOMETHINGit. We also 
thank Keijiro Araki, Yoichi Omori and Nobuto Matsubara for 
intensive discussions and comments. 

REFERENCES 
[1] Nakakoji, K., Interactivity, continuity, sketching, and experience (keynote 
abstract), in Proceedings of the 33rd International Conference on Software 
Engineering (ICSE '11), pp. 621-621, 2011 
[2] A. Goldberg and D. Robson, Smalltalk-80: The Language and its 
Implementation. Addison-Wesley Longman Publishing Co., Inc., 1983 
[3] Kay, A., A Personal Computer for Children of All Ages. In Proceedings of 
the ACM annual conference - Volume 1 (ACM '72), Vol. 1., 1972 
[4] Yamamoto, Y., Nakakoji, K. Interaction Design of Tools for Fostering 
Creativity in the Early Stages of Information Design, International Journal of 
Human-Computer Studies (IJHCS), Special Issue on Creativity L. Candy, E. 
Edmonds (Eds.), Vol.63, No.4-5, pp.513-535, October, 2005. 
[5] Nakakoji, K. and Yamamoto, Y., Conjectures on How Designers Interact 
with Representations in the Early Stages of Software Design, in Software 
Designers in Action: A Human-Centric Look at Design Work, M. Petre, A. van 
der Hoek (Eds.), Chapman & Hall 2013 (in print). 
[6] Buxton, B., Sketching User Experiences – getting the design right and the 
right design, Morgan Kaufmann Publishers Inc., 2007 
[7] Hudak, P., Hughes, J., Jones, S. P. and Wadler, P., A history of Haskell: 
being lazy with class. In Proceedings of the third ACM SIGPLAN conference 
on History of programming languages (HOPL III), 2007 
[8] Fitzgerald, J. and Larsen, P. G., Modelling Systems: Practical Tools and 
Techniques in Software Development. Cambridge University Press, 1998 
 [9] Agerholm, S. and Larsen, P. G., A Lightweight Approach to Formal 
Methods, in Proceedings of the International Workshop on Current Trends in 
Applied Formal Method: Applied Formal Methods, pp. 168-183, 1999 
[10] Kay, A. Squeak etoys, children, and learning, 
http://www.squeakland.org/resources/articles. 
[11] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. 
Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y Kafai, 
Scratch: programming for all. Commun. ACM 52, 11 (November 2009), pp. 
60-67, 2009 
[12] Nielsen, C. B., Lausdahl, K. and Larsen, P. G, Combining VDM with 
executable code, in Proceedings of the Third international conference on 
Abstract State Machines, Alloy, B, VDM, and Z (ABZ’12), pp. 266-279, 2012 

 

14


