

 Int. J. Technology, Policy and Management, Vol. 8, No. 1, 2008 41

Expanding the knowing capability of software
developers through knowledge collaboration

Yunwen Ye*
SRA Key Technology Laboratory, Inc.
3–12 Yotsuya, Shinjuku, Tokyo 160–0004, Japan
and
Center for LifeLong Learning and Design
Department of Computer Science
University of Colorado
Boulder, CO 80309–0430, USA
E-mail: yunwen@colorado.edu
*Corresponding author

Yasuhiro Yamamoto
Research Center for Advanced Science and Technology
University of Tokyo
4–6–1 Komaba, Meguro, Tokyo, 153–8904, Japan
E-mail: yxy@kid.rcast.u-tokyo.ac.jp

Kumiyo Nakakoji
SRA Key Technology Laboratory, Inc.
3–12 Yotsuya, Shinjuku, Tokyo 160–0004, Japan
and
Research Center for Advanced Science and Technology
University of Tokyo
4–6–1 Komaba, Meguro, Tokyo, 153–8904, Japan
E-mail: kumiyo@kid.rcast.u-tokyo.ac.jp

Abstract: Because software development is a knowledge-intensive process, the
support of software developers presents two equally important challenges: the
establishment of a rigorous and quantifiable foundation for software systems,
and a better understanding of knowledge creation processes that take place
in software development. Software engineering research has traditionally
focused mostly on the former challenge. Focusing on the latter challenge,
this paper conceptualises software development as a knowledge-intensive
and collaborative activity. This new conceptualisation leads to the argument
that knowledge collaboration plays a central role in software development.
The paper discusses different forms of knowledge collaboration in software
development, roles that computers can play to support knowledge
collaboration, and the associated technical and social challenges. It argues
for the need to provide in situ and individualised support for knowledge
collaboration through the approach of layered support on demand, which is
illustrated with systems that we have developed.

 Copyright © 2008 Inderscience Enterprises Ltd.

 42 Y. Ye, Y. Yamamoto and K. Nakakoji

Keywords: knowledge collaboration; software development support;
sociotechnical environment; layered support on demand.

Reference to this paper should be made as follows: Ye, Y., Yamamoto, Y. and
Nakakoji, K. (2008) ‘Expanding the knowing capability of software developers
through knowledge collaboration’, Int. J. Technology, Policy and Management,
Vol. 8, No. 1, pp.41–58.

Biographical notes: Yunwen Ye is a Senior Researcher at SRA Key
Technology Laboratory, Inc., Japan, and a Research Associate at the University
of Colorado, Boulder. His research interests include the cognitive and social
aspects of software development, open-source software systems, computer
support for knowledge-intensive work and human-computer interaction.

Yasuhiro Yamamoto is an Associate Professor at the Research Center for
Advanced Science and Technology (RCAST), University of Tokyo, where
he co-directs the Knowledge Interaction Design (KID) laboratory. He has
worked as a Post-doctoral Researcher at the Japan Society for the Promotion of
Science, Japan Science and Technology Corporation, and RCAST. His research
interests include human-computer interaction, interaction design and design
process design.

Kumiyo Nakakoji is a Full Professor at RCAST, University of Tokyo, and a
Senior Research Fellow at SRA Key Technology Laboratory, Inc., Japan. She
has served as Chair, Editor, and committee member for a number of research
journals and conferences in such fields as human-computer interaction,
software engineering, and collective creativity support. Her current research
interest is knowledge interaction design, which is a framework for the design
and development of computational tools for creative knowledge work.

1 Introduction

Software development is knowledge intensive because it involves the application of
knowledge that comes from multiple domains. Software developers, therefore, are
knowledge workers, engaging in what Lazzarato (1996) called immaterial labour, which
is defined as the labour that produces the informational and cultural content of a
commodity. Immaterial labour blurs the traditionally sharp division between conception
and execution, creativity and labour, intellectual labour and material labour.

Software development is also a social practice. The process of software development
is enabled by intense interactions among software developers. Most systems involve
hundreds of developers who have to communicate and collaborate with each other in both
formal and informal ways.

The research on understanding and supporting software development has been carried
out mainly under the umbrella of software engineering. The primary concerns of software
engineering have been the establishment of quantifiable scientific foundations towards
the ultimate goal of reaching the stage where software systems can be built in a
methodical way through a specific and well-defined sequence of steps. Thus, the
productivity and quality of software development can be predicted and dictated mainly by
the soundness of the approach rather than by the craft and creativity of individual

 Expanding the knowing capability of software developers 43

developers. Such a focus seeks universal ‘best practices’ in software development
regardless of the nature of the software, the individuality of developers, and the
sociotechnical situations of the group of developers.

Although software development does share many characteristics with other
engineering disciplines, it presents new research challenges because the whole lifecycle
of software production and use is a kind of immaterial labour that critically hinges on
the knowledge and creativity of individual software developers and their intense social
interactions. In addition to focusing on the engineering aspects of software development,
we also need to think about the ramifications of software development as a goal-oriented
cognitive activity and a creative and social practice. We thereby need to focus on
the cognitive, creative, and social aspects of software development and software
developers. This alternative perspective aligns software development more with writing,
design, and architecture in which individual differences and creativity are more valued
and encouraged.

The writings of Weinberg (1971), Brooks (1987) and others (e.g., Fischer, 2002)
have touched upon the importance of many issues associated with the human-centric
viewpoint of software development, but unfortunately the attention given by software
researchers to the engineering aspects and human aspects of software development
are overwhelmingly disproportionate. From this human activity perspective, this paper
attempts to conceptualise software development as a knowledge-intensive and distributed
cognitive activity (Hollan et al., 2001), and ponders its implications for developing tools
that support software development.

The knowledge required for the creation of complex software systems is immense.
Given the limitations of human memory, learning capability, and time dedicated to
learning, few developers, if any, have all the knowledge needed in their own heads.
The knowledge is distributed between the developer and the external world, and the
development of a software system requires that a software developer not only fully utilise
the knowledge in the head but also exert his or her knowing capability – the ability
to access and learn from various knowledge resources in the world – in the context
of development.

Knowledge repositories and knowledgeable peers have been regarded as the two
primary important external knowledge resources. To expand his or her knowledge
capability, a software developer therefore needs to engage in an activity that we call
knowledge collaboration – utilising knowledge repository systems as well as enlisting the
help of peer developers to acquire the needed knowledge that the developer does not have
yet. This paper identifies research questions that arise from shifting our focus to the
knowing capability of software developers and their demonstrated effective behaviours in
practice; develops the framework of knowledge collaboration that can expand knowing
capability; and introduces the approach of layered support on demand, which supports
in situ knowledge collaboration by dynamically creating a network of knowing according
to who is looking for what, and under what kind of sociotechnical environment.

The paper is structured as follows. Section 2 introduces theoretical foundations that
undergird the conceptualisation of software development as a knowledge-intensive and
collaborative activity, and elucidates the importance of knowing capability in the practice
of software development. Section 3 discusses various aspects of knowledge collaboration
in software development and the technical and social challenges therein. Section 4

 44 Y. Ye, Y. Yamamoto and K. Nakakoji

describes the approach of layered support on demand that overcomes such challenges
with a brief description of systems in which the approach has been instantiated. Section 5
presents conclusions.

2 Theoretical foundations

2.1 From engineering to design

Software development is a process of creating representations that can be executed
by computers. In addition to the final formal representations (i.e., programs or code),
developers also make, during the process of development, many other kinds of
representations (often called documents), such as requirements, specifications, design
diagrams, and test plans for the purpose of communication and collaboration.
Representation making is therefore central to software development, and the centrality of
representation-making makes software development an instance of design rather than an
instance of manufacturing that ends up with physical artefacts.

A design process consists of a series of goal-oriented cognitive activities in which the
goal itself is often not well defined in the beginning and needs to be better defined
through the design process itself. Empirical studies of designers in other fields as well as
in software development have shown that this design process, contrary to the beliefs of
many software methodologists, does not follow any preset procedures (Detienne, 1995).
It is dynamically determined by the knowledge of the designer and the feedback from
the sociotechnical environment in which the designer works. In other words, the design
process is a continuous conversation between human minds and the interim design
representations through repeated cycles of action and reflection-in-action (Schön, 1983).

Software developers are therefore reflective practitioners. They act to make
representations. Owing to the complexity of software systems, the conflicts of design
requirements to be reconciled, and the possibility of various ways of addressing the same
problem, those representations are tentative and tend to produce consequences other than
those intended by the developers. Developers need to reappreciate their newly created
design situations by reflecting upon the feedback presented by the representations, and
then act further in an opportunistic way by constantly shifting attention to critical parts of
the problem. The skills demonstrated by designers lie in how they are able to take
situated actions in response to the situational back-talk through reflection-in-action.

Viewing software development as a series of reflective design activities implies a
new set of requirements for software development environments: How can we increase
the situational back-talk of developer actions? How can we enrich the development
environment with more task-relevant information that stimulates reflection?

2.2 From knowledge to knowing capability

Both representation making and reflection during the software development process
require developers to activate and apply knowledge relevant to the task at hand. The
notion of ‘knowledge’ has expanded from its traditional focus on knowledge as ‘stored
artefacts’ in a person’s head to the focus of a person’s ability to find one’s way around
the world through effective interaction and collaboration with tools and people in his or
her environment. To achieve efficiency in such knowledge-intensive work as software

 Expanding the knowing capability of software developers 45

development, knowledge workers need not only to utilise the knowledge that they have
acquired in their heads, but also to exert their knowing capability in practice. This
expansive perspective of knowledge leads away from the attention on what a knowledge
worker knows in abstract, which has been the major focus of current discourse on
software engineering education and knowledge management, and towards a focus on the
situated actions taken by developers when they engage in work, and the intelligent
behaviours demonstrated by developers in utilising whatever internal and external
resources are available in practice (Orlikowski, 2002).

The concept of knowing capability in practice is grounded in the theoretical thinking
of philosopher Polanyi (1966), who noted that most of human knowledge is tacit, and
sociologist Giddens (1984), who argued that immense knowledgeability is involved in the
effective actions of human beings. This type of theoretical thinking is further supported
by the anthropological studies of Hutchins (1994) and Suchman (1987).

Shifting the focus from individual knowledge in the abstract to knowing capability in
the context of human interaction with tools and peers has led to the development of the
theory of distributed cognition, which views an individual and the surrounding context as
a whole cognitive system (Hollan et al., 2001) to be analysed and supported. Hollan et al.
point out that cognitive processes are distributed along at least three dimensions:

1 Cognitive processes may be distributed across the members of a social group.

2 Cognitive processes may involve coordination between internal and external
(material or environmental) structures.

3 Cognitive processes may be distributed through time in such a way that the products
of earlier events can transform the nature of later events.

Focusing on the knowing capability of software developers in practice, we can pose
the following research challenges: What are the suitable configurations of developers,
representations, and tools that can enhance the knowing capability of software
developers? How can we create appropriate sociotechnical platforms that support
software developers in acquiring external knowledge in the world to complement their
insufficient knowledge ‘in the head’?

2.3 From division of labour to distribution of knowledge

As software systems become more complex and larger, the amount and kinds of
knowledge required increase at a rapid speed and change constantly. For example,
application domains are subject to rapid changes, a vast amount of third-party libraries
are continually updated, new features and functionalities continue to be introduced in
programming tools and environments, and new languages are invented. The required
body of knowledge for the development of modern software systems is becoming so vast
that no single developer can have all the knowledge (Robillard et al., 2004).

The knowledge required in software development includes not only the process
knowledge and domain knowledge that are distilled into the software system, it also
includes knowledge about the software system itself that developers are currently
creating. One may argue that because the software developer participates in the creation
of the system, he or she should know the system inside out. However, because large-scale
software systems are created collaboratively by many people, not all developers, if any,

 46 Y. Ye, Y. Yamamoto and K. Nakakoji

would have complete knowledge about the whole system. At the same time, with the
increasingly widely accepted view of software systems as evolving entities, the
percentage of incremental, continuous development tasks in software development has
risen quickly (Rajlich and Gosavi, 2004). Such software systems need to be continuously
developed with iterative processes. In addition, with the high turnover rate in the software
industry, many developers are working to make incremental changes to systems that have
been partially developed, or even to systems that are already operating daily.

Software developers in a project team, therefore, do not have a uniform knowledge
structure. Each of them has a unique set of skills and expertise, and at the same time does
not know all of what other developers know, leading to the phenomenon of ‘asymmetry
of knowledge’ (Fischer, 1999). This asymmetry of knowledge is not a barrier; rather, it
is an opportunity that needs to be explored fully to enhance the collective capability
(Orlikowski, 2002) of a project team. The key is how to integrate this diversity of
expertise and synthesise it into the collective knowing of a software project team through
collaboration in which ideas and inspirations cross fertilise and feed on each other.

Collaboration has been a major research topic in software engineering. However,
most of the current research has focused on the brawny aspects of collaboration, namely,
the power brought by many hands. The major concerns have been on the cooperation,
communication, and coordination problems brought about by the consequences of
division of labour (Herbsleb and Mockus, 2003). The other aspect of collaboration in
software development in need of more research attention is the brain power of the
multiple heads of developers, namely, the collective knowing capability brought forth by
the unique knowledge of developers who mutually complement each other.

3 Knowledge collaboration in software development

Knowledge plays a central role as software developers engage in reflective practices in
software development, but software developers do not always have all the knowledge
that is required for their tasks because knowledge is distributed among developers.
Many empirical studies of software development have shown that software developers
routinely engage in seeking external expertise (McDonald and Ackerman, 1998). Expert
developers demonstrate knowledgeable behaviours not only because they have more
knowledge than novice developers but also because they are able to obtain help from
other developers in a timely fashion (Berlin, 1993) and to find and utilise external
knowledge resources more effectively.

When a developer does not have sufficient knowledge for his or her development
task, that developer must engage in knowledge collaboration by enlisting the help of
external knowledge resources that either are embedded in computational tools or exist
only in knowledgeable peers. Knowledge collaboration, a joint intellectual endeavour in
which a software developer engages with external cognitive tools and knowledgeable
peers, has thus become an essential activity in most of today’s software development,
and it defines the knowing capability and competence of software developers. Figure 1
illustrates the core idea of knowledge collaboration. Suppose a development task requires
a combination of three knowledge elements, as shown in Figure 1–1; and Developer A,
who is in charge of the task, has only one element in his or her head, and the other two
elements are held in a tool and by Developer B. However, if Developer A is able to

 Expanding the knowing capability of software developers 47

construct a network of knowing, as shown in Figure 1–2, enlisting the help of the tool and
Developer B, Developer A would be capable of accomplishing the task just as if he or she
possessed all the knowledge elements in his or her own head.

Figure 1 Knowledge collaboration

3.1 Forms of knowledge collaboration

Following Nahapiet and Ghoshal (1998), who argue that all new resources, including
knowledge, are created through the two generic processes of transfer and combination,
we view knowledge transfer and collaborative knowledge construction as two basic
forms of knowledge collaboration.

Knowledge transfer takes place when knowledge held by one person is transferred
to others. Knowledge transfer does not necessitate direct interactions if knowledge can
be codified and stored in knowledge repositories, from which the knowledge seeker
is able to retrieve and apply it to his or her own work. However, the other major form
of knowledge, tacit knowledge, cannot be readily transferred through knowledge
repositories. Because tacit knowledge is essentially embedded in everyday practices and
social interactions, it can be transferred only through social interactions. In such cases,
direct communication and interaction between knowledge seekers and knowledge
providers have to take place for the tacit knowledge to become transferable.

Collaborative knowledge construction occurs when knowledge workers cannot cover
the full spectrum of knowledge required to solve a problem. New knowledge has to
be created by combining knowledge held by each worker. Collaborative knowledge
construction is not a simple sum of each participant’s knowledge, but a result of mutually
stimulating exchange embedded in social interactions and practices. During this process,
implicit assumptions are externalised; different viewpoints are presented, negotiated, and
integrated; and formerly unconnected knowledge elements get connected and combined
to create new knowledge.

3.2 Dimensions of knowledge collaboration

Knowledge collaboration can take place along two axes: the technological axis and the
social axis. Along the technological axis, knowledge workers utilise external cognitive
tools to complement the insufficient knowledge in their heads. Cognitive tools include

 48 Y. Ye, Y. Yamamoto and K. Nakakoji

books, manuals, and computerised information repositories such as online help systems
and reuse repository systems. Knowledge collaboration supported by external cognitive
tools facilitates mainly indirect knowledge transfer, and the combination of knowledge is
conducted in the head of the knowledge seeker. However, as researchers in knowledge
management have repeatedly discovered, the mere existence of a knowledge repository
does not naturally lead to the transfer of knowledge (Fischer and Ostwald, 2001). To
utilise external knowledge from repositories, software developers are faced with a
number of cognitive challenges (Ye and Fischer, 2002):

• They may not even be aware of the existence of useful external knowledge.

• They may not be able to find the relevant external knowledge.

• They may not be able to understand and apply the new knowledge.

• Different software developers have different knowledge needs and require
individualised support.

When perusing the external knowledge itself is not enough for learning, due to the
inability to capture contextual and tacit knowledge in knowledge repositories, software
developers often turn to knowledgeable peers for help (Berlin, 1993). Knowledge
collaboration, hence, also takes place along the social axis by enlisting the help of peers.
The basic challenges in supporting knowledge collaboration along this social axis are:

• Software developers may not know to whom they can turn for help on a particular
problem (Becks et al., 2004).

• Experts who are able to help may not be willing to do so owing to the interruption to
their own work, among various other reasons (Cross and Borgatti, 2004).

3.3 Roles of computers in supporting knowledge collaboration

Computers can play two roles to support knowledge collaboration in
software development:

1 as a cognitive tool to support software developers

2 as a mediating tool to provide a platform that facilitates knowledge collaboration
among software developers.

3.3.1 Computer-augmented knowing capability

Computer-based tools such as compilers, editors, and reusable libraries have always been
an important part of the repertoire that constitutes the technical competence of software
developers. However, such tools have not become equal partners in the underlying
knowledge-intensive process of software development. Developers use such tools by
delegating a part of development tasks such as compiling and linking, or by utilising
them to carry out a planned action such as editing. Equal partners in the knowledge
collaboration process should be able to directly contribute their own knowledge to the
development process by augmenting the back-talk of user actions in order to complement
the insufficient knowledge of software developers and to exert direct influences on

 Expanding the knowing capability of software developers 49

subsequent reflections and actions of developers. With the intelligence augmentation
brought by computer systems, software developers are able to demonstrate a knowledge
capability that is larger than their knowledge in the head would have enabled.

Automatic spelling correction in a word processor is one simple example of enhanced
knowing capability. If a student fails to spell an English word correctly, an English
teacher would view the student as lacking knowledge of that word. However, if the
student is writing an essay with a word processor and ventures a guessed spelling that is
close enough, the automatic spelling correction would be able to help the student spell
correctly. Readers of the essay would then think the student has knowledge of the word.

An example of research that views computers as equal partners in the knowledge
collaboration process of software development is the LispCritic system (Fischer, 1987),
which is an intelligent agent that helps programmers improve their programming skills. It
suggests better solutions after it has recognised a programmer’s less ideal code segment.
Programmers can improve their skills by working together with the LispCritic system that
provides feedback.

3.3.2 Computer-mediated knowledge collaboration

In computer-mediated knowledge collaboration, the computer plays the role of
connecting software developers in need of new knowledge with developers who have the
knowledge. Computational environments provide sociotechnical platforms for software
developers to exchange and combine knowledge from different people. This line of
research has been conducted mainly in Computer-Supported Cooperative Work (CSCW).

Because software development has traditionally been viewed as an individual
cognitive process in software engineering, there has not been much work in applying
CSCW research results to support software development. The Answer Garden system
(Ackerman and Malone, 1990) is an early effort to support Unix users in obtaining help
from other knowledgeable peers by routing questions asked by a user to pre-registered
Unix experts. Expertise Browser (Mockus and Herbsleb, 2002) mines configuration
management logs to find who has expertise on a portion of a system.

The above systems have focused on finding the experts on a particular problem or a
domain. An important aspect that has been missing is why the experts should participate
in the knowledge collaboration process. For a knowledge collaboration process to
succeed, finding who the experts are is only the first step. As knowledge resources,
experts are different from other resources that are ‘things’. “A thing is available at the
bidding of the user – or could be – whereas a person formally becomes a skill resource
only when he consents to do so, and he can also restrict time, place, and method as he
chooses” (Illich, 1971). To create a computational platform to support knowledge
collaboration, the motivation to participate has to be considered from the beginning.

3.4 Technical support and social support

The above two roles that computers play in supporting knowledge collaboration (as
a cognitive tool and a mediating tool) are similar to the two threads of research in
knowledge management: the repository-based approach and the community-based
knowledge-sharing approach, respectively.

 50 Y. Ye, Y. Yamamoto and K. Nakakoji

Deeply influenced by research in artificial intelligence, the knowledge repository
approach believes that expertise or knowledge can be externalised and formalised
for sharing. The research focus, therefore, is on extracting knowledge by interviewing
experts, formalising extracted knowledge, storing formalised knowledge in knowledge
repositories, and developing retrieval mechanisms to locate and retrieve knowledge from
repositories (Fischer and Ostwald, 2001).

Based on a realisation of the difficulties in the knowledge repository approach that
cannot capture the tacit knowledge, a community-based approach was proposed (Lave
and Wenger, 1991). This approach focuses on understanding and supporting knowledge
transfer and collaboration through human communications because it believes that
learning takes place naturally when people from a community of practice engage in
practices together. In contrast to the knowledge repository approach, in which knowledge
is managed, this approach advocates promoting informal communication in communities
through the management of social networks and the creation of expert lists, so that users
know whom to ask when they have a problem.

Both approaches have their merits and shortcomings. The repository-based approach
is fully controlled by the user, who can enlist the collaboration of knowledge repository
systems whenever needed. The community-based approach is subject to the time and
willingness of other partners. The repository-based approach is more efficient, and the
community-based approach incurs considerable cost because it requires users to invest
time and effort in advance to establish membership in the community and it also requires
the time, attention, and goodwill of knowledgeable peers. The major problem with the
repository-based approach, as we have pointed out, is that it cannot capture tacit and
contextual knowledge, and therefore its support for knowledge collaboration is limited.

An ideal situation is that whenever the knowledge collaboration can be handled by
the repository-based approach, we should strive for that. The community-based approach
should be better used as a social backup only when it is needed because social
support is more costly. By integrating the two approaches, continuous support can be
provided for software developers to engage in knowledge collaboration according to their
unique needs.

4 Layered support on demand

The need for knowledge collaboration in software development arises during the software
developer’s practice and varies according to who is currently doing what. The support for
knowledge collaboration therefore has to be contextualised to the particular situation in
which the needs for collaboration arise and is individualised to the particular developer
who is seeking external knowledge. Different developers have differing needs for
external knowledge, even though faced with the same development task, because the
background knowledge of each varies. For the same developer, the need for external
knowledge may also be different, depending on the current development task.

To provide contextualised and individualised support for knowledge collaboration,
we have developed the approach of layered support on demand, which divides support
for knowledge collaboration into different layers and provides each support layer
in situ based on the individualised demand of each developer. The approach embeds
sociotechnical support for knowledge collaboration in development environments and
provides a natural link from the task at hand to a variety of external information and

 Expanding the knowing capability of software developers 51

knowledge resources, which are presented at different levels of abstraction in response
to the varying needs of each developer. Depending on the working context and
background knowledge of each developer, a unique network of information and
knowledge is dynamically constructed and presented to provide a seamless transition
from developers’ interactions with tools to interactions with external knowledge and
other knowledgeable peers.

4.1 Layers of sociotechnical support for knowledge collaboration

Successful knowledge collaboration with external knowledge resources requires that
software developers be able to locate, comprehend, and use external knowledge in a
timely fashion when the need arises during their practice. This process involves at least
four different phases: awareness, discernment, evaluation, and application (Carey and
Rusli, 1995). In the awareness phase, software developers have to be made aware of
the existence of external knowledge that can be applied in their current tasks. In the
discernment phase, software developers quickly determine whether a piece of knowledge
is relevant to their current task. The evaluation phase involves a detailed study of the
knowledge for a relatively thorough understanding. In the application phase, software
developers need to combine the external knowledge with their existing appreciation of
the development situation and apply it in the current task.

Each phase requires a different level of detail. For awareness, software developers
need a prompt about the existence of relevant external knowledge. For discernment,
an overview of the knowledge is enough. This phase also requires the simultaneous
presentation of several candidates for software developers to compare to find the
knowledge that is most relevant. For evaluation, software developers need to focus on
the details of a chosen piece of knowledge. In the application phase, examples that use
the knowledge are very effective in helping users understand, adapt, and integrate the
knowledge by providing context and enabling software developers to draw analogies
between their task and examples.

The detail required for utilising external knowledge depends on the background
knowledge of the developer. Because each software developer has a unique knowledge
structure, his or her needs for knowledge collaboration vary. A continuum of demands
for different levels of detail exists. On one extreme, if the developer already knows the
presented knowledge, even vaguely, an overview of the knowledge may be enough. On
the other extreme, if the developer has never encountered the piece of knowledge before,
he or she may need to go through all the phases. Owing to the tacit nature of knowledge,
a knowledge repository cannot capture all the knowledge, and finding an expert on the
topic becomes necessary for the user to understand and apply the knowledge.

Knowledge collaboration with peer experts presents further challenges for
individualised support. First, as the notion of asymmetry of knowledge conveys,
knowledge is not evenly distributed among software developers. Therefore, the term
‘expert’ is not an absolute attribute, but it is only a relative attribute of a developer,
depending on the knowledge. Experts can be identified only after the piece of knowledge
of interest is known. Second, interpersonal social relationships play critical roles in
motivating and shaping the ways that people collaborate with each other (Cross and
Borgatti, 2004). Upon finding experts, we have to take into consideration the unique
social network of each developer.

 52 Y. Ye, Y. Yamamoto and K. Nakakoji

4.2 Providing individualised support on demand

Using one typical software development activity – software reuse – as an example to
illustrate the approach of providing layered support on demand for each software
developer’s contextualised and individualised needs for knowledge collaboration, this
section briefly describes the integration of two systems that we have developed:
CodeBroker and STeP_IN. The description of the systems in this paper is not about the
systems themselves; rather, it is meant to illustrate how the approach of the continuous
layered support on demand can be instantiated. For further details about the goals,
functionality, design, implementation, and evaluation of CodeBroker and STeP_IN,
please see Ye and Fischer (2002) and Ye et al. (2007), respectively.

The CodeBroker system addresses the cognitive challenges in knowledge
collaboration along the technological axis: (1) being aware of the existence of external
knowledge (Java API library in this case) as well as (2) being able to locate the needed
knowledge from a large repository. The STeP_IN system addresses the challenges in the
social axis of knowledge collaboration by helping software developers find peer
developers who (1) have expertise on the piece of knowledge of current interest and (2)
are likely to be willing to offer timely help to the particular developer in need of support.
The STeP_IN system is based on a new conceptual framework, DynC (Ye et al., 2004),
that we have proposed to support situated knowledge collaboration.

The following subsections describe the six layers of support for continuous
knowledge collaboration, with the first two layers supported by CodeBroker and the rest
supported by STeP_IN. The problem to be addressed is to help software developers learn
to reuse Java API library components on demand that they do not yet know during their
development practice. The huge size of the Java API library (e.g., Java SDK 1.5.0 has
3279 classes) contributes greatly to the productivity gain of software developers but also
presents significant learning challenges to Java developers. It is hardly possible – but
unnecessary as well – for Java developers to learn the whole library before they start
development in Java. They have to learn incrementally during their development practice.

4.2.1 Autonomous individualised delivery to raise awareness

The first challenge for software developers to learn unknown components on demand is
that they have to be aware of the existence of some library components that can be reused
in their current task. With CodeBroker, which is completely integrated with the
development environment Emacs, software developers do not need to explicitly start
searching for task-relevant library components. As software developers enter document
comments and method signatures in the editing space (Figure 2–0), the system extracts
the comments and signatures and uses them in a query. A list of task-relevant
components (methods) that match the query is autonomously retrieved from the Java API
library and is displayed into the delivery buffer (Figure 2–1). This autonomous delivery
makes it possible for software developers to use information that they are not even aware
exists in the information repository, a well-recognised cognitive barrier to the utilisation
of knowledge repositories (Ye and Fischer, 2002).

Different users have different levels of knowledge and need different sets of external
knowledge, even for the same task. CodeBroker therefore uses user models to personalise
the retrieval results before they are delivered. The retrieved task-relevant components
are compared against the developer’s user model, which contains the components

 Expanding the knowing capability of software developers 53

he or she already knows. The known components are removed because the developer
would already be able to reuse those known components if they are reusable in the
current situation.

Each delivered component (Figure 2–1) is accompanied by a rank of its relevance to
the current task, the relevance value, its name, and the synopsis of its functionality. This
is a context-aware list of reusable components for the developer to browse, and it serves
as the first layer of support presented on demand. This layer of support increases the
situational back-talk of a developer’s work environment by making the developer aware
of unknown components that are relevant to his or her current development task, making
it possible to directly utilise knowledge that is still external.

4.2.2 Mouse movement-triggered information

Another important piece of information for a Java API method is its signature. We
decided not show the signature in the delivery buffer because signatures are usually long
and take too much of the scarce screen resource. Furthermore, signatures become relevant
only when the developer finds the library component has the potential to be reused. In
this sense, the signature of a component is secondary information needed to determine the
applicability of the component. Therefore, only when the developer moves the mouse
pointer over the component names in the delivery buffer (Figure 2–1), the component’s
full signature is shown in the mini-buffer (Figure 2–2). This is the second layer of
information presented on demand to assist the developer in further determining the
relevance of the component to the task at hand.

4.2.3 Jumping to the documentation

When the developer finds one promising reusable component and wants to know more
about it, a click on the component name brings up a web browser that shows its full
documentation (Figure 2–3) in the STeP_IN system, with four new buttons added to the
standard Javadoc documents: Example, Discussion Archive, Ask Expert, and
Upload Example. The document serves as the third layer of support to assist software
developers in a detailed evaluation and application of the reusable component of interest.
Some software developers who are not very familiar with the library may also need this
layer of information to determine the task relevance of the component.

4.2.4 Finding examples

In some situations, a software developer might find that the document is inadequately
written or does not explain the ‘nitty-gritty’ of applying the components. The developer
can then press the Example button (Figure 2–3), which has been added to the standard
Java documentation system in STeP_IN, to get example programs that illustrate how the
component is used by other programmers (Figure 2–4). Those examples have been added
previously by other developers through the Upload Example button. Examples serve
as the fourth layer of support that helps the software developer understand the application
of the component. This layer of information can also be used for evaluating the relevance
of the component.

 54 Y. Ye, Y. Yamamoto and K. Nakakoji

Figure 2 Layers of support for knowledge collaboration invoked on demand

 Expanding the knowing capability of software developers 55

4.2.5 Reading the discussion archive

Examples may still not be enough for a software developer to understand how to apply
the component in his or her development task. For example, a software developer might
have concerns about issues related to performance or safety that are often neither
discussed in documents nor illustrated in examples. The software developer can, by
clicking on the Discussion Archive button, go to the archive of discussions that
have been saved from previous knowledge exchanges among software developers about
the component (Figure 2–5). The discussion archive is the fifth layer of support that
complements the insufficiency of codified knowledge captured in formal documents and
examples. The discussion archive assists in the evaluation phase, but the main purpose of
the archive is to help software developers glean undocumented contextual information
needed for applying the components in different real situations.

4.2.6 Finding experts for knowledge collaboration

If the developer’s question does not have an existing answer in the discussion archive, the
developer can click on the Ask Expert button to formulate a Dynamic Community
(DynC) to enlist the help of peer developers through discussion. A DynC is a subgroup of
knowledge workers that forms ad hoc in support of a particular user and a particular task,
and disbands as the task is finished (Ye et al., 2004). Unlike a static community, which
forms around a particular domain and exists for a long time, a DynC forms for a
particular task and exists only for a short period. The members of a DynC are selected by
using the following two criteria:

1 They have expertise on the particular task.

2 They have established affinitive social contacts with the particular user.

The first criterion is grounded in the observation that in today’s highly specialised
world, expertise is no longer an absolute attribute of person but a relative function of a
person and a task. In other words, experts can be identified only after the task is known.
The second criterion is grounded in the findings that existing social contacts between
the helpers and those they help could provide motivation to engage in knowledge
collaboration based on the social norm of generalised reciprocity (Fischer et al., 2004).

When a software developer asking for help clicks on the Asking Expert button,
according to the principles of DynC, STeP_IN goes through two steps – expert
identification and expert selection – to create the list of experts who should receive the
help request. The expert identification process examines the relationship between the
component and the experts to find all the members who have used the component
before in the programs that they have written, and creates a list of Candidate Helpers.
The expert selection process examines the social relationship from the asker to other
developers extracted from their e-mail exchange history and previous interactions in the
STeP_IN system to select from the list of Candidate Helpers a small group of people
who have established a social relationship with the developer who is asking the question.

An e-mail is then sent to the DynC Members to ask for their help. The DynC
Members who receive the e-mail requesting help can send back their help through
e-mails, and the e-mails are captured by the system and stored in the database in
association with the component. Such messages are then displayed for later members
who click on the Discussion Archive button.

 56 Y. Ye, Y. Yamamoto and K. Nakakoji

This is the sixth layer of support, which involves direct social interactions, and it is
meant to be activated only when all the previous layers of technical support fail because
social support requires the active participation of peers and incurs higher costs for
knowledge collaboration.

4.2.7 Section summary

The integration of the two systems incrementally provides layered support for knowledge
collaboration from awareness to social interaction, with a focus on the economical
utilisation of human attention by accommodating the varying needs of each individual
developer. Software developers fully control the provision of support; they can stop at
any layer whenever they deem the presented information to be sufficient for their needs.
For experts, the system remains brief and simple, without overloading information that
takes too much attention from their real tasks; for novices, the system covers the
complete spectrum of sociotechnical support, using human experts as the social
infrastructure to back up the inadequacy that is inherent in knowledge repository systems
due to the tacit nature of knowledge.

5 Conclusion

Focusing on the human and social aspects, this paper conceptualises software
development as a knowledge-intensive and collaborative activity carried out by a group
of developers with asymmetrically distributed knowledge. Knowledge collaboration
with external knowledge repositories and knowledgeable peers is essential for software
development. Knowledge collaboration in software development takes the forms of
knowledge transfer and knowledge combination. The overall capability of a software
project team is determined not only by the sum of the knowledge of individual
developers, but also by the collaboration between developers and tools, and the
collaboration among developers. Computational support for knowledge collaboration
should become an integral part of software development environments. Computer
systems can serve as equal partners that directly contribute knowledge to expand the
knowing capability of developers, or they can serve as communication platforms that
facilitate the knowledge transfer and combination among developers. Both approaches
have merits and shortcomings and should be integrated to provide continuous
support. Because individual developers have different background knowledge and
development tasks, knowledge collaboration support has to be customised to the
developer and his or her specific context. We propose the approach of layered support on
demand that aims to accommodate the dynamically changing needs of each developer.
This approach progressively provides more detailed external knowledge, depending
on the situated knowledge needs of each developer, from awareness to full-fledged
social interactions.

 Expanding the knowing capability of software developers 57

References
Ackerman, M.S. and Malone, T.W. (1990) ‘Answer garden: a tool for growing organizational

memory’, Proceedings of the ACM Conference on Office Information Systems, Cambridge,
Massachusetts, pp.31–39.

Becks, A., Reichling, T. and Wulf, V. (2004) ‘Expertise finding: approaches to foster social
capital’, in M. Huysman and V. Wulf (Eds.) Social Capital and Information Technology,
Cambridge, MA: The MIT Press, pp.333–354.

Berlin, L.M. (1993) ‘Beyond program understanding: a look at programming expertise in industry’,
in C.R. Cook, J.C. Scholtz and J.C. Spohrer (Eds.) Empirical Studies of Programmers: Fifth
Workshop, Palo Alto, CA: Ablex Publishing Corporation, pp.6–25.

Brooks, F.P.J. (1987) ‘No silver bullet: essence and accidents of software engineering’, IEEE
Computer, Vol. 20, No. 4, pp.10–19.

Carey, T. and Rusli, M. (1995) ‘Usage representations for reuse of design insights: a case study of
access to online books’, in J.M. Carroll (Ed.) Scenario-Based Design: Envisioning Work and
Technology in System Development, New York: Wiley, pp.165–182.

Cross, R. and Borgatti, S.P. (2004) ‘The ties that share: relational characteristics that facilitate
information seeking’, in M. Huysman and V. Wulf (Eds.) Social Capital and Information
Technology, Cambridge, MA: The MIT Press, pp.137–161.

Detienne, F. (1995) ‘Design strategies and knowledge in object-oriented programming: effects of
expertise’, Human-Computer Interaction, Vol. 10, Nos. 2–3, pp.129–169.

Fischer, G. (1987) ‘A critic for LISP’, Proceedings of 10th International Joint Conference on
Artificial Intelligence, Los Altos, CA: Morgan Kaufmann, pp.177–184.

Fischer, G. (1999) ‘Symmetry of ignorance, social creativity, and meta-design’, Knowledge-Based
Systems, Vol. 13, Nos. 7–8, pp.527–537.

Fischer, G. (2002) ‘Desert island: software engineering – a human activity’, Automated Software
Engineering, Vol. 10, No. 2, pp.233–237.

Fischer, G. and Ostwald, J. (2001) ‘Knowledge management – problems, promises, realities, and
challenges’, IEEE Intelligent Systems, January–February, pp.60–72.

Fischer, G., Scharff, E. and Ye, Y. (2004) ‘Fostering social creativity by increasing social capital’,
in M. Huysman and V. Wulf (Eds.) Social Capital and Information Technology, Cambridge,
MA: The MIT Press, pp.355–399.

Giddens, A. (1984) The Constitution of Society: Outline of the Theory of Structure, Berkeley:
University of California Press.

Herbsleb, J. and Mockus, A. (2003) ‘An empirical study of speed and communication in
globally-distributed software development’, IEEE Transactions on Software Engineering,
Vol. 29, No. 3, pp.1–14.

Hollan, J., Hutchins, E. and Kirsch, D. (2001) ‘Distributed cognition: toward a new foundation for
human-computer interaction research’, in J.M. Carroll (Ed.) Human-Computer Interaction in
the New Millennium, New York: ACM Press, pp.75–94.

Hutchins, E. (1994) Cognition in the Wild, Cambridge, MA: The MIT Press.

Illich, I. (1971) Deschooling Society, New York: Harper and Row.

Lave, J. and Wenger, E. (1991) Situated Learning: Legitimate Peripheral Participation,
Cambridge, UK: Cambridge University Press.

Lazzarato, M. (1996) ‘Immaterial labour’, in P. Virno and M. Hardt (Eds.) Radical Thought in
Italy: A Potential Politics, Minneapolis: University of Minnesota Press, pp.133–147.

McDonald, D.W. and Ackerman, M.S. (1998) ‘Just talk to me: a field study of expertise location’,
Proceedings of Conference on Computer Supported Cooperative Work, Seattle, Washington,
pp.315–324.

 58 Y. Ye, Y. Yamamoto and K. Nakakoji

Mockus, A. and Herbsleb, J. (2002) ‘Expertise browser: a quantitative approach to identifying
expertise’, Proceedings of 2002 International Conference on Software Engineering, Orlando,
Florida, pp.503–512.

Nahapiet, J. and Ghoshal, S. (1998) ‘Social capital, intellectual capital, and the organizational
advantage’, Academy of Management Review, Vol. 23, pp.242–266.

Orlikowski, W.J. (2002) ‘Knowing in practice: enacting a collective capability in distributed
organizing’, Organization Science, Vol. 13, No. 3, pp.249–273.

Polanyi, M. (1966) The Tacit Dimension, Garden City, NY: Doubleday.

Rajlich, V. and Gosavi, P. (2004) ‘Incremental change in object-oriented programming’, IEEE
Software, Vol. 21, July–August, pp.62–69.

Robillard, M.P., Coelho, W. and Murphy, G.C. (2004) ‘How effective developers investigate
source code: an exploratory study’, IEEE Transactions on Software Engineering, Vol. 30,
No. 12, pp.889–903.

Schön, D.A. (1983) The Reflective Practitioner: How Professionals Think in Action, New York:
Basic Books.

Suchman, L.A. (1987) Plans and Situated Actions, Cambridge, UK: Cambridge University Press.

Weinberg, G.M. (1971) The Psychology of Computer Programming, New York:
Van Nostrand Reinhold.

Ye, Y. and Fischer, G. (2002) ‘Supporting reuse by delivering task-relevant and personalized
information’, Proceedings of 2002 International Conference on Software Engineering,
Orlando, Florida, pp.513–523.

Ye, Y., Yamamoto, Y. and Kishida, K. (2004) ‘Dynamic community: a new conceptual framework
for supporting knowledge collaboration in software development’, Proceedings of 11th
Asia-Pacific Software Engineering Conference, Busan, Korea, pp.472–481.

Ye, Y., Yamamoto, Y., Nakakoji, K., Nishinaka, Y. and Asada, M. (2007) ‘Searching the library
and asking the peers: learning to use Java APIs on demand’, Proceedings of 2007
International Conference on Principles and Practices of Programming in Java, Lisbon,
Portugal: ACM Press (forthcoming).

