
To be presented at: Symposium on Interactive Visual Information Collections and Activity (IVICA2009), Austin, TX., June, 2009.

Time-Based Authoring Tools for
Informal Information Management

Yoshinari Shirai1 Yasuhiro Yamamoto2 Kumiyo Nakakoji2,3

1NTT Communication
Science Laboratories,

NTT Corporation

 2RCAST, University of Tokyo
4-6-1 Komaba, Meguro
Tokyo, 153-8904, Japan

 3SRA Key Technology Laboratory, Inc.
3-12 Yotsuya, Shinjuku,
Tokyo 160-0004, Japan

way@cslab.kecl.ntt.co.jp {yxy, kumiyo}@kid.rcast.u-tokyo.ac.jp

ABSTRACT
When we generate writings and drawings in creative knowledge
work, such as in producing a company report, writing a paper,
making presentation slides, or in developing programs, we often
go back to what we have previously authored. This paper presents
our history-centric approach to support such types of authoring.
The approach first saves all editing actions in an editor in its
history database, and then provides the Time-based Slicing
mechanism to interactively visualize the historical data in various
levels of granularity. We instantiate the approach through the
design and development of HeEditor (History-Enriched Editor)
for writing, and HeSketch (History-Enriched Sketch) for drawing.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical User Interfaces, Interaction styles.

General Terms
Design, Human Factors

Keywords
Time-based Slicing, History-enriched Tools, History-centered
Authoring Support, HeEditor, HeSketch

1. INTRODUCTION
We as knowledge workers generate a large number of writings
and drawings on computers using text editing and drawing tools.
As such an authoring task proceeds, the authored content keeps
growing but not necessarily monotonously increases. New text or
strokes are added while some of the older text or strokes are
deleted. Some text may need to be removed because of page
limitations and space constraints. The task may ends within a few
hours or in a few days, or may even span over weeks and months.
We save the state of writings or drawings as a "file," which is a
snapshot of the current cluster of writings or drawings. When
saving them as files, we decide their names, and their locations
(i.e., where in the file directory structure to put them). Some
people keep producing versions of the content by using different
file names, and others keep overwriting the content onto a single
file. As the task proceeds, the authored content originally saved
within a single file may be split into multiple files, or the content
of multiple files may be merged into a single file. We may share
the current writings or drawings via email with our colleagues by

attaching files. When receiving files sent by others, we may
rename the files and save them at some locations.
Desktop search tools help us manage what we have previously
authored on computer systems. Common desktop search tools,
such as Google Desktop [5], Apple Mac OS X Spotlight [8], and
Microsoft Windows Search [9], for instance, help us quickly
search for files on PCs by using file names as well as file content.
In addition to such content-based search, more specialized tools
for personal information management, such as Stuff I've Seen [2]
and phlat [1], provides context-based search, where users refine
search results by selecting filters, using dates, file types, or
authors.
During the authoring process, we may sometimes go back to what
we have previously authored. This type of authoring strategy is
typical when we generate writings and drawings in creative
knowledge work, such as in producing a company report, writing
a paper, making presentation slides, or in developing programs.
We think that existing search tools and information management
tools are not enough for supporting this type of authoring because:
(1) a file is not something a user looks for; the content of the file
is. The file as a unit of information to retrieve does not
corresponds with the user’s unit of concern; and
(2) a user cannot search for the content that is not saved within a
file thereby the user has to keep worrying about when to save as a
file. Even so, the user may not have saved a certain stage of
writing or drawing by thinking that it would not be worth saving,
or merely by mistake.
This paper presents an approach that supports authoring through
informal information management. Our approach is first to save
all editing actions in an editor in its history database, and second
to provide mechanisms to browse the historical data in various
levels of granularity through the Time-based Slicing (TbS)
technique. The TbS mechanism allows users to interactively
change how to cluster a set of historical data elements by
changing time intervals. We instantiate the approach through the
design and development of HeEditor (History-Enriched Editor)
for writing, and HeSketch (History-Enriched Sketch) for drawing.

2. HISTORY-CENTRIC AUTHORING
SUPPORT
It has been a commonly acknowledge exercise that we re-
appropriate what we have previously written or drawn for the
current authoring task.

To be presented at: Symposium on Interactive Visual Information Collections and Activity (IVICA2009), Austin, TX., June, 2009.

For instance, when we make slides in preparation for a paper
presentation at a conference, we often go back to the file of the
original paper. We may use a couple of diagrams used in the
paper for the slides, and may copy a few phrases from the paper
for the slides. When we write an extended journal paper based on
the published paper, we may want to access unused sentences in
the final version of the published paper that had been removed
due to the page limitations. When we need to extend a computer
program that we wrote some time ago, we review the existing
source code to make sure what the implemented algorithms were.
If we cannot remember the reason why we adopt some of the
algorithms, we may confirm the process of modification by
comparing the current version with the earlier versions of the code.
This paper proposes a history-centric approach to support such
types of authoring where a user revisits what the user has
previously authored and re-appropriate it for the current authoring
task.
The approach consists of two elements: first, to collect all the
editorial activities and store them, and second, to provide a
browsing mechanism so that an author can peruse previous
editorial stages according to the author's unit of concern.
Collecting and saving all the editorial actions, including key
typing and stroke drawing, frees an author from worrying about
whether and when to save the current writing and drawing as what
files. Fischer [3] uses the notion of design-time and use-time to
illustrate the difficulty of predicting a priori during the design-
time how the artifact would be used in use-time. By saving the
whole process of authoring, the user does not have to make a
decision about how the authored document would be used during
the design- (i.e., authoring-) time.
The browsing mechanism would be a key to take a full leverage of
the existence of the entire authoring process. It is not the resulted
writings and drawings but the experience of authoring the writings
and drawings that the author wants to re-appropriate. The same
individual differently interprets the same piece of information
depending on his or her context [10]. The author should be able to
interact with the historical stages of the authoring task at various
levels of granularity during the re-appropriation process.

For a browsing mechanism to enable this process, we use the
Time-based Slicing (TbS) technique. The following section
describes the technique.

3. THE TIME-BASED SLICING
TECHNIQUE
We have developed a Time-based Slicing (TbS) technique to
interactively change the clustering of editorial history elements.
The technique uses the notion of a history data, which is a
sequence of time-stamped events. Each event is a history element.
In text editing, each key action, such as inserting a letter or
deleting a letter, is recorded as a history element. In drawing, each
stroke operation is recorded as a history element.
The TbS technique uses the time interval of two temporally
adjacent history elements as a way to visually slicing the history
data. By visually slicing, we mean that a sliced group of history
elements is visually presented at a time as one cluster. The basic
idea is that a set of history elements that successively occurred
within some range of time interval can be grouped as one cluster,
and that changing the range of time interval would result in
different sizes of clustering (see Figure 1). The idea comes from
our daily experience. One usually types the letters of a word or a
phrase in a successive manner with very short intervals. Typing
stops a little before start typing a new word or a phrase. By taking
larger intervals as a slice, we may get to identify a paragraph or a
document. By looking at the time interval of the two successive
editorial actions, we would be able to identify the position within
the paragraph where one ponders in the midst of writing the
paragraph.
As illustrated in Figure 1, when specifying a small time interval as
a threshold value, history elements are clustered into a large
number of small groups. The minimum size of a cluster is
composed of one history element. When specifying a larger time
interval as a threshold value, history elements are clustered into a
smaller number of larger groups. Note that this time interval
ranges from milliseconds (time interval between typing two
characters) to hours and days (time interval between the last
editorial action in the previous authoring task and the first
editorial action in the next authoring task; that is, the duration of
no editorial actions) as our approach collects all the editorial

Figure 1: Time-based Slicing Mechanism

To be presented at: Symposium on Interactive Visual Information Collections and Activity (IVICA2009), Austin, TX., June, 2009.

actions over a long period of time. Even when the tool is quit, it
continues recording editorial actions as “no acitons” till the tool is
reopened.

4. TWO TOOLS: HeEditor AND HeSketch
We have implemented HeEditor and HeSketch based on the
approach described in the previous sections.

4.1 HeEditor for Writing
HeEditor is a tool for authoring text. The tool captures and stores
all the keystroke data in its history databases. Each time a user
makes a keystroke within HeEditor, a history element is
composed and added to the history database. Each history element
consists of a tuple of the key operation type (i.e., insertion or
deletion), its position (i.e., the number of characters from the
head), its character code, and its timestamp.

Figure 2: HeEditor: Editing Area (left) and History Dialog Window (right)

Figure 3: Time-based Slicing in HeEditor’s History Dialog Window

To be presented at: Symposium on Interactive Visual Information Collections and Activity (IVICA2009), Austin, TX., June, 2009.

HeEditor displays a line of *'s in the menu bar of the editing area.
The number of *'s indicates the approximate amount of keystrokes
made within HeEditor. An * is added each time a certain number
of editing actions are stored in the history database.
Figure 2 shows HeEditor. The editing area (Figure 2 left) provides
basic editing functionality, such as inserting and deleting
characters, copying/cutting/pasting text, or clearing the editing
area. Each of such operation is stored in the history database as a
timestamped history element.
The History Dialog window (Figure 2 right) shows a list of
clusters of history elements that are grouped together using the
TbS mechanism. The list of clusters is ordered from the bottom to
the top according to their timestamps. The user may scroll up or
down to browse the list of historical states, and thus view how the
authoring has proceeded.
When the user clicks on one of the clusters displayed in History
Dialog, the current editing area is first stored in the history
database then cleared, and finally the state of the editor displayed
in the selected cluster is brought to the current editing area so that
the user may examine the details of the cluster. The user may
continue editing with the retrieved state of the edits, go back to
the previous state by using History Dialog, or start writing from
scratch by clearing the writing area.
Using the handle located in the bottom of the History Dialog
window, the user specifies the time-interval threshold. If the user
moves the handle toward right, the threshold becomes larger,
resulting in thicker slices (i.e., the history events happened in a
longer time period are grouped together) (see Figure 3). As the
user moves the handle back and forth, the History Dialog window
dynamically updates the visual representations of them, allowing
the user to explore the desired clustering size for him or her to
focus on.

4.2 HeSketch for Drawing
HeSketch is a tool for drawing sketches. The tool captures and
stores both the stroke data and the states of the canvas (i.e., the
drawing area) in its history databases. Each time a user draws a
stroke in the canvas of HeSketch, a stroke history element is
composed and stored in its database. Each stroke history element
consists of a tuple of the stroke ID, a set of X-Y coordinates that
compose the stroke, and the timestamps of the starting and
finishing times of drawing the stroke. When a user adds a stroke
either by drawing or copying strokes from the history database, or
removes one or more strokes in the drawing area, a new canvas
history element is composed and stored in its database. Each
canvas history element consists of a tuple of a set of currently
displayed stoked ID's in the canvas, and its timestamp.
The canvas allows the user to draw a stroke by moving a mouse
cursor while holding its button. The canvas provides a stroke
deletion operation with a specialized visual effect. When a user
selects one or more strokes in the canvas by specifying the area by
using a mouse, the system draws a bounding box with dotted lines.
When the user clicks on the top right corner of the bounding box,
the strokes are immediately become very light gray, less visible in
the canvas. This is a removing operation. The color of the
removed strokes keep fading out and they completely become
invisible (i.e., white) when the certain amount of time passes after
the user evokes the removal operation.
Figure 4 shows the main canvas window of HeSketch, and its two
history-browsing components: the Canvas History Dialog window
(Figure 4 left) and the Stroke History Dialog window (Figure 4
right). The main canvas area shows several light-gray strokes,
which indicate that they have been recently deleted from the
canvas. Note that those strokes are also displayed in each of the
top of the Canvas History Dialog window and Stroke History
Dialog window.

Figure 4: HeSketch (center), its Canvas History Dialog Window (left) and
 Stroke History Dialog Window (right)

To be presented at: Symposium on Interactive Visual Information Collections and Activity (IVICA2009), Austin, TX., June, 2009.

The Canvas History Dialog window displays a list of thumbnails
of the canvas states stored in the canvas history database. The
Stroke History Dialog window displays a list of clusters of strokes
stored in the stroke history database (note that a cluster of strokes
are enlarged to fit the thumbnail display area). In the same manner
as HeEditor's History Dialog window as described above, such
clusters are ordered from the bottom to the top according to their
timestamps (i.e., the newer ones are toward the top).
When the user clicks on one of the thumbnails displayed in the
Canvas History Dialog window, the current state of the canvas as
well as the strokes are first stored in the two history databases,
then the canvas is cleared, and finally the state of the
corresponding historical state is brought in to the current canvas

area. When the user clicks on one of the clusters displayed in the
Stroke History Dialog window, the set of strokes consisting of the
cluster are added to the current Canvas area.
By using the handle located in the bottom of the each Canvas
History Dialog window and Stroke History Dialog window, the
user specifies the time-interval threshold for slicing the clusters of
the historical data in the same way as HeEditor's History Dialog
window. As the user moves the handle and changes the threshold,
the History Dialog window dynamically updates the visual
representation of the clusters, as shown in Figures 5 and 6.

5. RELATED APPROACHES
This paper presents our history-centric approach for supporting
authoring and managing authored content. From the viewpoint of
using temporal information for managing authored material, a
physical notebook is a good example.
People take notes in a notebook typically in the order of pages
starting from the first page to the last page. Text notes, sketches,
and sentences on a notebook are thus temporally ordered from the
starting page toward the subsequent pages. Such content continue
to remain on the notebook unless we explicitly erase it. That is,
notebooks capture and store all of the writing and drawing
histories and visualize them in the temporal order. The historical
content is divided by "pages" and cannot be freely changed. Our
TbS technique can be viewed as a way to interactively changes
the "page-divisions" within a notebook.
The goal of our TbS technique is to interactively visualize the
historical states of writing and drawing processes with various
levels of granularity so that a user can explore the "right" size of a
history cluster that corresponds to the user's unit of concern.
Existing tools visualize a variety of information materials using
such temporal information.
For instance, LifeStreams stores the entire documents in a time-
ordered list and presents them as a stream of documents [4]. A
concept of Time-Machine Computing allows a user to visit the
past states of a computer system [11]. Its TimeScape component
visualizes the history of all modifications of a desktop
environment, such as producing and removing a file from the
desktop [11]. Stuff I've Seen [2] and phlat [1] help users find files
on PCs by using keywords and present the results lists, which are
sorted by time. TimeSpace [7] and Milestones in Time [12] plots
the files on a time-line diagram. The system by Viegas, et.al [14]
visualizes the modification process of wiki. These examples
primarily focus on file-based information and not the processes of
how each file is authored.
Activity tracing tools are most similar to our approach. Edit wear
and read wear capture and store the text editing history of
documents and visualize them onto an editor window's scrollbar
[6]. They use the editorial historical data to guide a user by
suggesting which part of the document to pay attention to.
TypeTrace is a software system that records and plays back typing
on computers [13]. It helps users to reflect in how the writing has
proceeded. ART019 is a sketchbook interface based on a time-
based representation for hand-drawn strokes, where free-hand
drawing is recorded as a sequence of time-stamped strokes [15].
ART019 allows a user to access strokes through the time-based
representation, and go back to any point in the previously made
snapshots of his or her drawing. Our TbS technique would add
powerful interactivity with editorial historical data for these tools.

Figure 5: Time-based Slicing in HeSketch’s Canvas History

Dialog window

Figure 6: Time-based Slicing in HeSketch’s Stroke History Dialog

window

To be presented at: Symposium on Interactive Visual Information Collections and Activity (IVICA2009), Austin, TX., June, 2009.

6. FUTURE DIRECTIONS
This paper presented two tools, HeEditor and HeSketch, which
are designed based on the Time-based Slicing technique. Both
tools are currently implemented as tools for viewing a single
stream of editorial data. We have been working on designing a
tool that allows a user to engage in an authoring task by looking at
multiple streams of editorial data, including writing, sketching,
programming, and email messaging.
The two tools are currently implemented as prototypes as a proof
of concept. We plan to extend the tools so that they become
feasible for practical usage. We would then conduct user
experiments with real editorial data collected over a long period of
time.

7. REFERENCES
 [1] Cutrell, E., Robbins, D., Dumais, S., and Sarin, R. 2006. Fast,
flexible filtering with phlat. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 261-270.
[2] Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., and
Robbins, D. C. 2003. Stuff I've seen: a system for personal
information retrieval and re-use. SIGIR '03: Proceedings of the
26th annual international ACM SIGIR conference on Research
and development in informaion retrieval. 72-79.
[3] Fischer, G., and Nakakoji, K. 1991. Making design objects
relevant to the task at hand. In Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91). 67-73.
[4] Freeman, E., and Gelernter, D. 1996. Lifestreams: a storage
model for personal data. SIGMOD Rec. 25, 1, 80-86.
[5] Google Desktop, http://desktop.google.com/
[6] Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T.
1992. Edit wear and read wear. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 3-9.

[7] Krishnan, A. and Jones, S. 2005. TimeSpace: activity-based
temporal visualisation of personal information spaces. Personal
Ubiquitous Comput. 9, 1, 46-65.
[8] MacOSX Spotlight,
http://www.apple.com/macosx/features/300.html#spotlight
[9] Microsoft Windows Search,
http://www.microsoft.com/windows/products/winfamily/desktops
earch/default.mspx
[10] Oda, T., Yamamoto, Y., and Nakakoji, K. 2006. Use-Centric
Information Re-presentation for Creative Knowledge Work.
Symposium on Interactive Visual Information Collections and
Activity (IVICA2006).
[11] Rekimoto, J. 1999. Time-machine computing: a time-centric
approach for the information environment. UIST '99: Proceedings
of the 12th annual ACM symposium on User interface software
and technology. 45-54.
[12] Ringel, M., Cutrell, E., Dumais, S., and Horvitz, E.
2003.Milestones in Time: The Value of Landmarks in Retrieving
Information from Personal Stores. INTERACT2003.
[13] TypeTrace, http://typetrace.jp/about/tt/
[14] Viegas, F. B., Wattenberg, M., and Dave, K. 2004. Studying
cooperation and conflict between authors with history flow
visualizations. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Vienna, Austria, April 24
- 29, 2004). 575-582.
[15] Yamamoto, Y., Nakakoji, K., Nishinaka, Y., and Asada, M.
2006. ART019: A Time-Based Sketchbook Interface. Technical
Report, KID Laboratory, RCAST, University of Tokyo.

