
Appeared in the Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE 2007), ACM Press, Dubrovnik, Croatia, pp. 351-360, September, 2007.

1

A Socio-Technical Framework for Supporting
Programmers

Yunwen Ye1,3
1L3D Center

Department of Computer Science
University of Colorado, Boulder, USA

+1-303-492-3547
yunwen@colorado.edu

Yasuhiro Yamamoto2
2KID Lab
RCAST

University of Tokyo, Japan
+81-3-5452-5286

yxy@kid.rcast.u-tokyo.ac.jp

Kumiyo Nakakoji2,3
3SRA Key Technology Lab

3-12 Yotsuya, Shinjuku
Tokyo, Japan

+81-3-3357-9011
kumiyo@kid.rcast.u-tokyo.ac.jp

ABSTRACT
Studies have shown that programmers frequently seek external
information during programming, from source code and
documents, as well as from other programmers because much of
the information remains in the heads of programmers.
Programmers therefore often ask other programmers questions to
seek information in a timely fashion to carry out their work. This
information seeking entails several conflicting factors. From the
perspective of the information-seeking programmer, not asking
questions degrades productivity. Conversely, asking questions
interrupts other programmers and degrades their productivity, and
may be frowned upon by peers due to the perceived social
inconsideration of the information seeker. From the perspective of
the recipients of the question, even though helping is costly, not
helping also incurs social costs due to the deviation from social
norms. To balance all these factors, this paper proposes the
STeP_IN (Socio-Technical Platform for In situ Networking)
framework to guide the design of systems that support
information seeking during different phases of programming. The
framework facilitates access to the information in the heads of
other programmers while minimizing the negative impacts on the
overall productivity of the team.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering. H.5.3 [Information
Interfaces and Presentation]: Group and Organization Interfaces
- computer-supported cooperative work, theory and models. J.4
[Computer Applications]: Social and Behavioral Sciences -
sociology.

General Terms
Design, Economics, Human Factors

Keywords
Programming support, socio-technical support, information
acquisition and sharing, communication

1. INTRODUCTION
Programming involves both individual activities and collaborative
activities. As an intensive cognitive activity, programming
requires undivided attention, and in general programmers prefer to
work in a solitary environment with long periods of uninterrupted
time during which they can concentrate [11, 27]. It is this kind of
uninterrupted solitary work that gets the code written. However,
due to the intricate interdependency of their work caused by the
division of labor and the distribution of information required for
the creation of software systems, programmers also have to
interact with peers for various reasons [16].

Programming is a continual process of seeking information and
creating information in representational media. The information
created by one programmer affects other programmers whose
work depends on it, and who have to seek the necessary
information in a timely fashion to carry out their work. In
programming, code and documents are used as media for
representation, and they are the major resources for programmers
to seek necessary information. However, programmers do not
always articulate everything in code and documents, and much of
the information remains in their heads [19]. Programmers
therefore often have to interrupt—or be interrupted by—other
programmers through various communication channels to
accomplish their individual programming tasks effectively.

This kind of information seeking is not for the general purpose of
learning or creating awareness, in which information is not
immediately coupled with the task at hand. Rather, it is a clearly
purposed act that serves the goal of accomplishing an individual
programmer’s task at hand; it arises on an as-needed basis and
requires quick resolution. A programmer who is unable to obtain
such information timely cannot carry out his or her programming
effectively, thus lowering that programmer’s productivity, which
in turn lowers the productivity of the project team.

Asking peers for information, however, incurs costs that also have
negative impacts on the productivity of the team. Information
seeking interrupts the preferred solitary work of the programmers
who are asked. The cost of interruption is not only the time and
attention spent to help the information-seeking programmer; it
also is the disruption of flow and continuity of the ongoing work,
which reduces the productivity of the helper [29]. Although
helping the information-seeking programmer is costly, saying
“no” to peers would also incur considerable social cost.

A trade-off, therefore, exists between the frequency and the
timing of programmer interactions for the purpose of information
seeking that arises during programming practices. Computational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE 2007, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009…$5.00.

2

tools that support a programmer’s seeking of external information
to improve his or her productivity have to be carefully balanced
with incurred cost on the overall productivity of the team as a
whole.

We approach the above issue from a socio-technical perspective.
In addition to providing potentially relevant information for the
current context, we argue that programming environments also
need the integrated support of helping programmers in asking
questions to acquire information held in the heads of peer
programmers. We propose the STeP_IN (Socio-Technical
Platform for In situ Networking) framework to provide unified
support for acquiring external information in code and documents
and with peers. This general framework is intended to provide
guidelines for developing programming environments that support
programmers in acquiring external information during different
phases of their programming practices. To examine the feasibility
of the STeP_IN framework, we have instantiated the framework
and developed a socio-technical system of supporting Java
programmers to learn to use class libraries.

2. SOCIAL FACTORS OF PEER SUPPORT
A number of researchers have already recognized the need to use
the expertise of peer programmers. Berlin has found that expert
programmers are experts not only because they have more
expertise but also because they use other programmers’ expertise
more frequently [4]. Several systems that help programmers find
experts, notably Expertise Recommender [21] and Expertise
Browser [23], have been proposed in the past years.
Finding experts, however, does not necessarily lead to the
acquisition of the information being sought. As information
resources, programmers differ from resources that are “things.”
“A thing is available at the bidding of the user—or could be—
whereas a person formally becomes a skill resource only when he
consents to do so, and he can also restrict time, place, and method
as he chooses [17].” The willingness of a programmer to engage
in helping other programmers to solve their tasks depends on a set
of perceived social factors.

Note that the social factors considered here differ from those of
existing studies that focus on social aspects of software
development in such contexts as how developers and users work
together in designing a computer system [32], or how developers
coordinate their work in geographically distributed projects [16].
The following social factors need to be taken into account when
programmers want to use peers as information resources for their
programming tasks.
(1) Programmers have to take the risk of looking “ignorant”
among their peers because asking a question implies they are
missing some knowledge. Studies show that askers demonstrate
different asking behaviors, depending on whether they are in
public, in private, communicating with a stranger, or
communicating with a friend due to the different levels of
perceived psychological safety in admitting a lack of knowledge
[7].

(2) Programmers feel different levels of difficulty and easiness,
depending on to whom they ask and through what communication
channels. It is easy for programmers to ask peers for information
through face-to-face communication because they tend to have a
good sense of what the person is doing at the moment of asking
and feel socially comfortable to initiate contact with those they

know well. People feel relatively comfortable posting a question
to a mailing list if they are familiar with some members of the
mailing list. It is usually easier to compose a question in a
personal email communication than to post a question to a Wiki or
other type of publicly accessible media.

(3) Programmers may immediately get necessary information or
may never get any useful information, depending on to whom they
ask and how they ask. Rhetorical strategies, linguistic complexity,
and word choice of the question all influence the likelihood of
others responding [18]. Making a personal appeal in the question
results in a better and faster response than making a non-personal
appeal [7].

 (4) Programmers may feel interrupted when being asked for
information by their peers. Answering, or providing help,
consumes the time and attention of the helpers and interrupts their
primary task. An interruption is regarded as an unexpected
encounter initiated by another person, which disturbs “the flow
and continuity of an individual’s work and brings that work to a
temporary halt to the one who is interrupted” [29].
(5) Programmers may not be willing to respond to a question,
depending on who is asking what. Responding to a question
requires programmers to spend precious time. Deciding whether
and how to help an asker depends on their perceived social
relationship both with the asker and with the social environment at
large. The theory of social capital provides an analytic framework
to understand this decision-making process [13]. Social capital is
the “sum of the actual and potential resources embedded within,
available through, and derived from the network of relationships
possessed by an individual or social unit” [24]. Social capital is
regarded as important as financial capital and intellectual capital
for an individual as well as a social organization because it would
promote cooperation and reduce transaction costs [15].

(6) Programmers may respond to a question not because they
want to answer it, but because they do not want to ignore it. Even
though helping is costly, taking no action also incurs a social cost.
Saying “no” untactfully to an asker deteriorates the expert’s
relation with the asker and negatively affects the expert’s social
reputation among other peers because such behavior deviates from
social norms [26].

3. THE STEP_IN FRAMEWORK
We have developed a conceptual framework called STeP_IN for
the design and development of socio-technical environments that
support programmers to seamlessly access external information,
which includes source code, documents, and peers as information
resources that are necessary for their programming tasks. We
envision that this framework will serve as a guiding substrate for
other researchers as well as ourselves in developing application
systems that support different information needs in different
phases of programming, such as those for program maintenance
and those for learning a component library.

The STeP_IN framework views peer programmers as information
resources equally important as code, documents, and various
kinds of information repositories (e.g., reuse repositories,
discussion archives) that programmers might use during
programming practices. It takes into consideration the social
factors of treating peer programmers as information resources,
and employs mechanisms that ensure communications between
programmers that are not disruptive to the overall productivity as
well as social atmosphere of the team as a whole.

3

Many types of communication needs exist in programming, such
as those of informing programmers of the status of the project,
those of brainstorming for design ideas, and those for consensus
building. STeP_IN aims to support the kind of workflow-based
communication that facilitates information seeking and sharing
during the ongoing activities of an individual member. This type
of communication is characterized by such features as the
following: it arises on an as-needed rather than scheduled basis; it
is usually for problem-solving and assistance-giving in nature; it
occurs as a sequence of highly focused interactions in a short
period of time; and it involves a relatively small group of
participants. This type of ad hoc and in situ communication that
supports programmers to carry out their individual tasks has been
shown to take up to 41% of a programmer’s time [28].

3.1 Design Principles
This section outlines the essential principles that underlie the
design of the STeP_IN framework.

Principle 1: Information seeking should be treated as an in situ
and highly individualized act. A programmer’s needs for external
information arise when he or she is dealing with a specific
programming task in a programming environment. The
acquisition of the necessary information for a programmer
therefore has to be made in a timely fashion so that he or she can
carry out the current task more effectively and productively in a
fluid manner [33]. The external information also needs to be
presented to the information-seeking programmer in a way that is
shaped to the context of the particular problem and the unique
structure of the programmer’s background knowledge.

Principle 2: Whenever possible, programmers should minimize
the times to resort to peers as information resources. Resorting to
code and documents is inexpensive in the sense that the use of
such information is merely at the bid of the information-seeking
programmer. The major challenge of supporting the easy
acquisition of information existing in code and documents is
mostly technical: to design better information retrieval
mechanisms and interfaces. In contrast, resorting to peers as
information resources comes with a much higher social cost and is
highly constrained because it involves not only the information-
seeking programmer but also those who are asked to provide
information.

Principle 3: When a programmer seeks information from peer
programmers, he or she should be able get the necessary
information in a timely fashion with minimum effort. When a
programmer has to resort to peers as information resources, he or
she should be able to ask those who have the pertinent
information, regardless of whether the programmer knows who
the experts on the particular topic are. The information that the
information-seeking programmer gets should be of high quality,
arrive timely, and help the programmer to solve the current
problem.

Principle 4: The interruption caused by being asked for help by
other programmers should be reduced as much as possible. When
a programmer is approached to provide information for the benefit
of another programmer, that programmer is distracted from his or
her own programming task. The cost of interruption incurred on
each information-providing programmer should be minimized
through the use of appropriate communication tools. More
important, from the perspective of the collective productivity of
the team, those programmers who do not provide such
information should not be interrupted.

Principle 5: Programmers should not be forced into sharing
information. Helping peers by providing information should not
be treated as an isolated one-shot act in the process of software
development; it has to recur as new needs emerge. The success of
one act of providing information should not come at the cost of
the information provider’s reluctance to engage in future acts of
providing information. Because the willingness of information
providers is the critical factor that affects the long-term success of
the project, it is important to grant information providers the full
freedom of deciding how they want to engage in helping others.
They should not be forced into helping just for the fear of causing
unnecessary disruptions to the social cohesion and norms of the
project team, which is unlikely to be sustainable.

3.2 Software Project as a Socio-Technical
Information Space

To create programming environments that adhere to the above
principles, the STeP_IN framework conceptualizes a software
project as a socio-technical information space, which consists of
three interrelated elements: code, documents and programmers.
The term “document” here refers to both the traditional design
documents (e.g., specifications, test plans) and such records as
configuration management logs, bug reports, and email archives
that are accumulated during the development of systems. In this
socio-technical information space, information is embodied in
both its constituting elements and the relations of its elements.

Six categories of relations among constituting elements exist in
the socio-technical information space:

• code-code: A piece of code can be related to other pieces of
code in many different ways. For example, they are related
through their control flow or data flow, which defines the order
of execution; they are related if they both are part of the
implementation of a domain concept; and they are deemed
potentially related if they have been frequently modified at the
same time by many developers [37].

• code-document: A piece of code is related to a document if it
implements some of the concepts contained in that document
based on traceability analysis [3]; or if the document, such as a
Concurrent Versions System (CVS) log, explains the
development history of the code [8]; or if the code is
accompanied by a reference documentation, such as in the case
of reusable library code.

• document-document: A document is related to another
document if their contents are related to each other. For example,
a bug report is related to emails that discuss the bug.

• programmer-code: A programmer is related to a piece of code if
he or she has created, modified, or used it. This relation
indicates that the programmer might have expertise about the
code or retain certain information about the code that has not
been articulated in the code and its associated documents.

• programmer-document: A programmer is related to a document
if he or she participated in the discussion, creation, or
modification of the document. This relation indicates that the
programmer might have contextual and tacit knowledge about
the document.

• programmer-programmer: The relation between programmers
captures the history of their social interactions, including who
has helped whom, who prefers to work with whom, and who has
sent emails to whom.

4

These six categories of relations are defined differently when the
STeP_IN framework is instantiated for different purposes.

We view that the external information that a programmer needs to
acquire for his or her task lies in nodes of the socio-technical
information space and the structural configuration of the nodes.
To obtain such information, the programmer thus has to be able to
traverse the relational links among such nodes because
information flows along those links. Those relational links are not
immediately discernable to programmers when the information
space is huge and complex. The STeP_IN framework tries to
provide a programmer with an integrated socio-technical solution
to the in situ and individualized acquisition of external
information, regardless of whether its source is code, documents,
or peer programmers, by helping the programmer to traverse the
relational links while taking into account social considerations
(Figure 1).

Figure 1: Socio-Technical Support for Programmers

3.3 STeP_IN Features
The following features of the STeP_IN framework ensure that an
instantiated programming support environment adheres to the
design principles outlined in Section 3.1.

3.3.1 Integration with Working Environment
Support for information acquisition needs to be tightly integrated
with a programmer’s working environment for two reasons. First,
the support needs to be tuned to the existing working process of
the programmer because he or she needs to acquire new
information for the purpose of applying the new information to
the current task. When information acquisition support exists as a
stand-alone system, it increases the cognitive cost of information
access and use [5], such as requiring conscientious mental switch
of different workspaces, losing short-term memory, and needing
to reconstruct working context.

Second, integration with the working environment provides the
context of the problem with which a programmer is dealing,
which can be utilized by the information acquisition support
system to customize its support to the specific context and the
background knowledge of the programmer [8, 35].

3.3.2 Presentation of Task-Relevant Information
When a programmer lacks information to accomplish his or her
task under the pressure of productivity, the programmer would
generally be interested only in the information that helps to finish
the task. The challenges for a programmer to acquire task-relevant
external information are [12]:

(1) The programmer might not be aware that task-relevant
information even exists; and/or

(2) The programmer has to be able to start the search with a
well-formed query to explore the information space.

The STeP_IN framework incorporates both information delivery
and information access mechanisms to help programmers start the
information acquisition process. The information delivery
approach [34] analyzes the context in which the programmer is
currently working, and proactively prompts programmers to task-
relevant information whose existence the programmer might not
know. The information access mechanism provides a query
interface that allows programmers to locate the most relevant
information when they know what they are looking for. This
phase of support is based on the relation that directly links the
code and document to the programmer’s current task, and returns
first-cut search results (by either delivery or access) that are
immediately relevant to that task.

The relation utilized to return these first-cut search results is
different when the STeP_IN framework is instantiated to support
different programming tasks. For example, if we are to develop a
STeP_IN-based tool that supports library reuse, the first-cut
results would utilize the conceptual similarity between a
programmer’s coding task and reusable components in the library
[35]. If we are to develop a STeP_IN-based tool that supports the
maintenance of code, the first-cut search results could be based on
traceability links between code and design documents [3] or
mined implementation links between code and design issues [8].
3.3.3 Incremental Access to Contextual Information
If the immediately relevant information is not enough for the
programmer to accomplish his or her task, the programmer should
then be able to traverse the relations between the first-cut search
results and other code and documents in the socio-technical
information space to find more information that provides the
context. Such contextual information can help the programmer to
better interpret and understand the information pieces in the first-
cut search results. For example, the programmer can find example
programs that use a library code for reuse support, or the
programmer can find the development history of a piece of code
for maintenance support.

3.3.4 Identification of Peers to Ask for Information
If a programmer is still not able to accomplish the current task
with the information embodied in code and documents that he or
she could find, the programmer then should be able to ask for help
from peers who might have the information.

The STeP_IN framework takes into account what information is
sought by whom in identifying peers for the information-seeking
programmer to contact. The information pertaining to the former
is called the technical profile and the information pertaining to the
latter is called the social profile. The framework does not inform
the information-seeking programmer who the identified peers are.
Instead, it provides a communication channel for the information-
seeking programmer through which he or she can pose a request
for more information about a piece of code or document without
the need to know the identity of the experts. The question posed
by the information-seeking programmer is automatically routed to
a group of peer experts. Section 3.3.5 describes details of such a
communication channel.

The most important element here is to identify peers who are
willing to provide high-quality information in a timely manner to
the information-seeking programmer. At the same time, such a
request should not put any undue pressure on peers to provide
information if they are not in the appropriate condition, or willing,
to do so for whatever reasons.

5

First of all, the peer needs to have expertise on what is sought.
Additionally, as discussed in Section 2, such expertise-holding
programmer has to be willing to engage in providing information
with the information-seeking programmer. This willingness varies
according to the perceived social relationship with the particular
information seeker, as well as the perception of such factors of
social capital as obligations, expectations, and norms of general
reciprocity in the social group to which both programmers belong.

3.3.4.1 Technical Profiling: Considering What
Information Is Sought

The STeP_IN framework identifies peers that have the
programmer-code and programmer-document links in the socio-
technical information space to a piece of code or document in
which the information-seeking programmer is currently interested.
This process is similar to that of the Expertise Browser system
[23,] which finds programmers who have previously worked on
the code based on CVS logs.

A technical profile of a programmer indicates his or her expertise.
STeP_IN may use different kinds of links between programmer
and code as well as programmer and document to develop the
technical profile of a programmer. The technical profile of a
programmer may first be initialized by mining the historical data
of software projects and the programmer’s past work. It is also
important that the technical profile be editable by each individual
programmer to choose to answer only those questions in which
they are interested and to reduce the number of interruptions for
questions that they do not like and probably would not answer.
People are generally more interested in answering questions for
which they think they have exclusive expertise [6].

3.3.4.2 Social Profiling: Considering Who Is Seeking
Information

The STeP_IN framework identifies peers based on the
programmer-programmer relations that exist in the socio-technical
information space. It models a programmer’s social relations with
other programmers in the social profile of that programmer. The
social profile of a programmer has three major components: Inter-
Personal Obligation, Total Social Obligation, and Inter-Personal
Preference. The first two components may be derived from the
programmer’s previous interactions with the particular
information-seeking programmer as well as with other peers in the
whole group. The last component should be editable by individual
programmers.

(a) Inter-Personal Obligation denotes and models the inter-
personal social obligation that programmer X owes to
programmer Y. It denotes whether programmer X has certain
obligations to help information-seeking programmer Y because X
has been helped more by Y.

(b) Total-Social Obligation denotes and models the social
obligation that programmer X owes to the whole group. It denotes
whether X has certain obligations to help any other programmers
because X has often been the recipient of help in the past.

(c) Inter-Personal Preference denotes a programmer’s individual
preference of collaborating with each of other programmers. Note
that this relationship is not reflexive because each party’s
perception of their relation is quite different, and not always
mutual.
Among many social factors, of particular interest regarding a
programmer’s willingness to engage in helping another peer are

the expectations that other peers have of the individual
programmer and the obligations that the individual programmer
feels toward others. The expectations and obligations result from
previous social interactions among programmers.

Social relations are nuanced and affected by the subjective
perception of each person. It is quite natural that a person may
prefer to help, or not help, another person no matter what social
obligations he or she has. A situation in which a programmer is
forced into helping another programmer whom he or she does not
like to help just because he or she should do so, often results in
unsuccessful information sharing. Previous research has reported
that, when some experts are approached by people with whom
they do not like to work, they often quickly craft an impressive-
sounding, but not helpful, answer as a social defense to meet the
minimum demand of acceptable social behaviors and at the same
time to keep the information seekers from consuming too much of
their time [7]. Such behaviors just waste the time and attention of
both the information seeker and the information provider.

3.3.4.3 Concealed Identities
By taking into account both the technical and social profiles of
peer programmers, the framework becomes able to identify a
group of peers who both have the expertise and are highly likely
to offer help to answer the question posted by the information-
seeking programmer. However, the STeP_IN framework does not
show the identified group of peer programmers to the
information-seeking programmer. This design decision ensures
that the information providers, rather than the information seeker,
have control over the information-sharing process.
The benefits of the information-sharing process are asymmetrical
in that the information seeker enjoys far more benefits than
information providers; yet, if the information seeker knows
directly who the experts are, he or she decides, at his or her own
convenience, when and who to interrupt. Many organizations that
have published expert lists on their intranet have soon received
many requests from those listed experts asking to be de-listed due
to the overwhelming interruptions to their work.

3.3.5 Creation of a Socially-Aware Communication
Channel

When a group of peer programmers who are likely to provide
high-quality information are identified, the framework provides a
communication channel through which the question posed by the
information-seeking programmer is automatically routed to the
identified peers. The STeP_IN framework currently offers an
ephemeral mailing list for this purpose.

The question is sent to each member of the ephemeral mailing list
through emails. If a member of the ephemeral mailing list replies
to the question, his or her answer is sent to all members on the list.
The information exchanged is archived and stored in the socio-
technical information space for the benefit of those programmers
who are not involved. This ephemeral mailing list is different
from the traditional mailing list in that it is dynamically created
each time a question is posted and will disappear when the
information-sharing act is finished. The recipients are not
determined by their own subscriptions, but are selected based on
their social relationships with the information seeker and their
technical expertise on the topic.

The latter point makes the ephemeral mailing list similar to direct
emails because the members are intentionally targeted recipients
who have already established social ties with the sender. However,

6

the list differs from direct emails in that the members of the
dynamically created ephemeral mailing list are not made public.
The information-seeking programmer does not know who has
received his or her question. Only the receiver of the question
knows from whom he or she had received a question, but does not
know who else has received the same question. Because of this
anonymity, the recipient of the question has the freedom to decide
his or her engagement in the information-sharing act, and on what
terms, without the worry of being cornered into certain actions
just to meet the demands of acceptable social behaviors but at the
cost of his or her own productivity (and also the team
productivity).

If the recipient does not answer, for whatever reasons, nobody
will know it; therefore refusing to help is not socially
unacceptable, similar to “hiding out to get some work done” [11].
However, if the recipient answers the question, his or her identity
is revealed to all members of the ephemeral mailing list. This
asymmetrical information disclosure is meant to reinforce positive
social behaviors without forcing others into collaboration that
comes at the cost of either degrading the productivity of expert
programmers or damaging their willingness to engage in
information providing in the future.

Meantime, this process also relieves some of the social burdens of
the information-seeking programmer in deciding to ask a question.
Knowing that other programmers have the freedom to not respond,
the information-seeking programmer does not need to consider
whether his or her question would create a burden for the recipient.

4. APPLYING THE FRAMEWORK
To assess the feasibility of the STeP_IN framework, we have
instantiated the framework and developed the SIJ (STeP_IN for
Java) system to help Java programmers acquire external
information about Java class libraries.

4.1 The SIJ System
By incorporating social support, SIJ (Figure 2) extends the
CodeBroker system [35] that we previously developed to support

Java programmers to learn to use class libraries from documents,
examples, and other peers in a seamless way. The vast amount of
class libraries (for example, the Java SDK alone has 3279 classes)
makes it almost impossible for programmers to know all of them.
The not-known-yet part of the class libraries thus becomes the
external information that programmers have to utilize to develop
software systems efficiently.

4.1.1 Finding Task-Relevant Library Methods
The SIJ system first makes programmers aware of unknown class
libraries by proactively delivering task-relevant and personalized
library methods that can potentially be applied in the current
programming task but are not yet known to the programmers (see
[35] for details). The SIJ system is seamlessly integrated with the
programming environment Emacs. It has an interface agent that
runs as a background process in Emacs. The interface agent
analyzes continuously the partially written program in Emacs,
infers what kind of class libraries can be applied in the current
task, and displays automatically, at the bottom of the editing space,
the names and short descriptions of those task-relevant library
methods that the programmer has not yet known. If the
programmer finds one of the delivered methods interesting, a click
will take him or her to the full document of the library method in
the external documentation system (Javadoc) for Java libraries.

4.1.2 Accessing Contextual Information
If the programmer finds that documentation does not provide
enough information to learn to use the method, he or she can click
the Example link that the SIJ system has added to the standard
Javadoc system. This link will take the programmer to example
programs that show how the library method is used in other
programs (see [36] for details). If the programmer still has
questions about using the library method, he or she can click the
Discussion Archive link, which will take him or her to the
archived discussion that shows the questions that other
programmers have asked before about the method and the answers
provided by experts in the SIJ system.

Figure 2: SIJ: Instantiated from the STeP_IN Framework

7

4.1.3 Asking the Experts
If the discussions in the Discussion Archive still do not provide all
the information that the programmer needs to learn to use the
library method, he or she can click the Ask Expert link, which will
present a question-posting interface in which the programmer can
compose a question. After he or she presses the Submit button, the
question is sent to a group of expert programmers, who are
identified by SIJ. However, the programmer does not know to
whom the question is sent. The peer programmers who are
identified as “experts” for this particular programmer asking a
question on this particular method, and who will receive the
question, are determined through two subsequent processes:
expert identification and expert selection.

4.1.4 Identifying the Experts of the Method
Identification of the peer programmers who are experts on a
method is based on the technical profile of each programmer. The
technical profile of a programmer in SIJ includes all the library
methods in which the programmer has expertise. All the
programmers whose technical profiles include the method on
which the information-seeking programmer is interested are added
to the list of identified experts and become candidates to receive
the question. The SIJ technical profile is initiated by parsing the
Java programs that the programmer has written and counting the
number of usages of each library method [36].

The programmer can also edit his or her own technical profile
through the technical profile management interface in the SIJ
system to indicate a preference of being treated as an expert on a
particular task regardless of actual expertise. For example, if a
programmer has expertise about certain methods and is willing to
share this with other programmers, even though he or she has
never used it, the programmer can choose to declare himself or
herself as an Expert in the technical profile management interface.
More important, this interface also allows a programmer to be
excluded from receiving questions on methods that he or she does
want, even though he or she may know a lot about them. For
example, a programmer might deem it wasting time to repeatedly
answer questions on methods that do not matching his or her level
of skills, instead preferring more intellectually challenging
questions. A programmer can declare himself or herself as No
Knowledge regarding those methods in the technical profile
management interface.
Given the huge number of library methods, it is very time-
consuming for a programmer to make a declaration on all the
methods one by one. To make it easier for programmers to control
what questions they prefer to answer, the SIJ system provides the
following support. Whenever a question on a method is sent to a
selected expert programmer, the programmer can change his or
her expertise to No Knowledge on that method by clicking on a
link embedded in the question that takes the programmer to his or
her technical profile management interface.

4.1.5 Selecting the Experts
From the list of identified experts, the SIJ system selects those
experts who are most likely to answer the question based on the
social profiles of each of the experts.
The social profile of each programmer in SIJ has the following
attributes: IPP(X, Y), IPO(X, Y), and TSO(X), which represent
the Inter-Personal Preference of the programmer X toward Y, the
Inter-Personal Obligation of X toward Y, and the Total-Social
Obligation of X, respectively.

IPP(X, Y) has three values: 1, 0, and -1, representing, respectively,
that programmer X is strongly willing to help programmer Y at all
occasions, X is neutral toward helping Y, and X favors not to help
Y if possible. The default value of IPP(X, Y) is 0 and can be
edited by X at any time through the social profile management
interface of SIJ. Similar to the way to manage the technical profile,
whenever a question asked by information-seeking programmer Y
is emailed to a selected expert programmer X, expert programmer
X can click on a link embedded in the email and change his or her
IPP(X, Y) to either 1 or -1, declaring that he or she will always
answer any questions posted by Y that fall in his or her expertise,
or excluding him or her from being selected to answer any of Y’s
questions. Because the value of IPP(X, Y) is hidden from all other
programmers, programmer X can use a socially acceptable way of
refusing to help Y by secretly “closing the door” to Y.
IPO(X, Y) is calculated by subtracting the number of times that
programmer X has helped programmer Y from the number of
times that Y has helped X. A positive value of IPO(X, Y)
indicates that X should help Y more to return the direct favors that
he or she has received from Y.

TSO(X) is calculated by subtracting the number of times that
programmer X has helped others in the group from the number of
times that X has received help from others. A positive value of
TSO(X) means that X has social obligations to help any other
members in the group.

The expert selection process goes through the following five
passes:

Pass 1: For each member E in the list of the identified experts for
the purpose of helping information-seeking programmer A, SIJ
first looks at IPP(E, A). If IPP(E, A) is -1, it removes E from the
list of identified experts. If IPP(E, A) is 1, it adds E to the list of
selected experts and removes E from the list of identified experts.

Pass 2: For each member E in the remaining list of the identified
experts, if IPO(E, A) is positive, it adds E to the list of selected
experts and removes E from the list of identified experts.

Pass 3: For each member E in the remaining list of identified
experts, if TSO(E) is positive, it adds E to the list of selected
experts and removes E from the list of identified experts.

In the beginning of deploying the SIJ system, or when a new
member joins the SIJ system, because there is not enough history
of social interaction, it is often impossible to select enough
experts using the above three passes. To jump-start the social
interaction, the SIJ system utilizes the existing social interaction
history reflected in each member’s email archives. SIJ uses
Email(E, A) to represent the number of emails that E has sent to A,
determined by mining the email archive of A. If the previous three
passes do not result in the selection of a predefined number of
experts (the current default setting is 5, which is customizable), it
goes further through the following two passes.

Pass 4: If the list of selected experts does not reach the predefined
number of experts, from the remaining list of the identified
experts, SIJ adds experts, according to the order of Email(E, A) to
the list of selected experts, until the predefined number is met.
The rationale is that the more emails E has sent to A, the more
likely E knows A well and offers help to A.

Pass 5: If the selected list still does not reach the predefined
number of experts, from the remaining list of the identified
experts, SIJ adds experts randomly to the list of selected experts
until the predefined number is met. This pass is meant to be the

8

last resort to jump-start the whole information-sharing practice
and expand the social relation of those who do not have many
interactions with others.

4.1.6 Creating the Socially Aware Communication
Channel

The selected experts will become the members of the ephemeral
mailing list and receive the question posed by the information-
seeking programmer A. As described in Section 3.3.5, the
ephemeral mailing list is a communication channel through which
the question posed by the information-seeking programmer is
automatically routed to the identified peers without revealing who
the recipients are unless they respond to the message.
Because only the recipient knows that he or she received the
question, nobody would know if he or she does not offer help. If
recipient E does not want to receive more questions on the method,
he or she can click the link mentioned in Section 4.1.4 to secretly
change his or her expertise on this method to No Knowledge. If
recipient E has an individual preference to help A, E can also
click the link mentioned in Section 4.1.5 to change his or her
IPP(E, A).

If recipient E decides to help A, he or she can reply to the
question, and the reply is sent to all other members of the
ephemeral mailing list, and E’s identity is revealed to
acknowledge his or her good behavior. At the same time, the
social profile of E and A is also updated to reflect the fact that E
has offered help to A. IPO(E, A) is reduced by 1 and IPO(A, E) is
increased by 1, meaning that E now has less inter-personal
obligation toward A, whereas A has more inter-personal
obligation toward E. TSO(E) is reduced by 1 and TSO(A) is
increased by 1, meaning that E has less total social obligation
toward the group, but A has more total social obligation.

When the information-seeking programmer deems there is no
more need for further discussions about his or her question
because either enough help has been received or the question is
not likely to obtain further answers, the programmer should close
the ephemeral mailing list. If he or she does not close the
ephemeral mailing list after the mail exchange has ceased for a
predefined period of time, the ephemeral mailing list will be
automatically closed by the system.

The discussion that takes place in the ephemeral mailing list is
archived in the discussion archive of the SIJ system and linked to
the method. Other members who are not included in the
ephemeral mailing list can still have the chance of learning from
this information exchange by accessing the discussion archive.
The learning benefits of peripheral and passive participation in the
traditional broadcasting-to-all mailing list are still retained.

4.2 Assessing the SIJ System
This section briefly assesses how the SIJ system follows the
principles of providing socio-technical support for Java
programmers, as listed in Section 3.1. The SIJ system provides in
situ support because the system is embedded in the existing
programming environment. Programmers can go directly from
their programming practice to obtain help from peer programmers
without conscientiously switch from the mental mode of working
to the mental mode of learning. Because experts are selected
based on the programmer’s personal social network, the support is
highly individualized: The same question asked by different
programmers will result in different groups of experts who receive
the question. Furthermore, because the ephemeral mailing list is

dynamically created upon the posting of a question, it situates the
socio-technical support directly in the constantly changing
landscape of the distribution of expertise and the social dynamics
of the group. If the same programmer asks the same question at
different times, the recipients of the question might be different
because of the changes of expertise and social relations of
programmers.

Programmers cannot directly ask experts without at least spending
some time exploring the existing information accumulated in the
SIJ system. The information space of SIJ gradually evolves by
archiving the discussion that takes place in the ephemeral mailing
list. Such archived discussions are linked to the relevant methods.
This design strategy also reduces the number of repeated
questions asked and therefore the number of interruptions to the
peer programmers.

The number of interruptions is further reduced by excluding
irrelevant programmers (either no expertise or no willingness to
answer) from receiving the question. The expert identification
process ensures that only experts are sent the question, increasing
the quality of the answers. The expert selection process considers
the willingness of each recipient, increasing the possibility that the
programmer can receive a good answer in a timely fashion.

The socially aware communication mechanism (i.e., the
ephemeral mailing list) and user-editable technical profile and
social profile combine to give experts the full freedom of opting
to engage only in information sharing that interests them, with
those they prefer, and at their own convenience.

5. RELATED WORK
Helping programmers to acquire external information for their
programming task has attracted a lot of attention from researchers
in software engineering. The STeP_IN framework is an attempt to
synthesize the existing techniques and insights into a general
framework for creating better supporting tools and environments.

The Hipikat system [8] views the combination of code and
documents as an information space from which programmers can
glean expertise from existing code and development documents
alike with the help of their proposed recommendation technique
that mines and extracts hidden relations between code and
documents. We further this perspective and conceptualize a
software project as an interlinked socio-technical information
space by including programmers as information resources, based
on their relations with code and documents.

The concept of programmers as information resources has been
observed in empirical studies [4] and [20]. The latter cited study
has led to the development of the Expertise Recommender system
[21], which mines configuration management logs to identify
experts and recommend experts explicitly based on organizational
relations. The approach of identifying experts from project history
was further improved and validated in the Expertise Browser
system [23]. Such techniques could be used in instantiated
STeP_IN systems that support software maintenance. Again,
STeP_IN is a framework that would extend them by taking into
account social factors and using existing social relationships.

Some recent studies visualize the complicated interrelation among
code, documents, and developers. Ariadne [10], for instance,
visualizes social dependency among programmers based on their
authorship of interdependent code. Augur [9, 14], simultaneously
visualizes the structure of a software system and that of the
development process carried out by developers. Hybrid Networks

9

[22] integrates links from multiple development data sources,
such as email archives, CVS source codes, code tree branches,
and developers, and uses the Probabilistic Latent Semantic
Indexing clustering technique to associate and cluster them. Those
research attempts buttress our conceptualization of software
projects as a socio-technical information space. Although the
main thrust of the visualizations are to reveal the intricate
complexity of a software project, they can also be used to aid
programmers in determining and locating relevant external
information. Furthermore, these techniques used to extract the
links for visualization can be applied to the STeP_IN framework
for the creation of technical and social profiles.

Help support systems in general have been extensively studied in
the Computer Supported Cooperative Work (CSCW) field, of
which Answer Garden [1] and its next version Answer Garden 2
[2] are two systems that have developed many features that are
folded into the STeP_IN framework. For example, both systems
integrate the support of seeking external information from an
information repository and peers in a unified way, which is one of
the guiding principles of STeP_IN. Answers from peers are all
accumulated in discussion archives to reduce the overall cost of
answering by avoiding repeated questions. Social relation is also
considered in Answer Garden 2 in terms of organizational
structure, but not the nuanced perception of individual
relationships. The escalation of support, proposed in Answer
Garden 2, is in the control of the information-seeker and not the
information-provider. This has been the common approach to a
number of help support systems developed in the CSCW field,
such as Living Design Memory [30] and ContactMap [25]. They
disproportionately focus on providing benefits for the
information-seeker, without paying much attention to the various
burdens incurred upon the information-providers and the negative
impacts on the overall productivity of the group to which both
information seekers and information providers belong. The
STeP_IN framework takes a different direction by focusing more
on reducing the burdens to the information provider, and believing
sustainable information-sharing acts require the prudent use of the
time, attention, and good will of information providers. It does not
focus on the success of one information-sharing act in isolation;
rather, it treats one act as an episode that is situated in the context
determined by the information being sought and the social
dynamics among the group members, and that also shapes the
context for future acts.

6. DISCUSSIONS
The effectiveness of the STeP_IN framework relies heavily on the
accuracy and completeness of the technical and social profiles of
each programmer. Accurate and complete profiles require much
effort from programmers. We have designed mechanisms of
amortizing the efforts into smaller steps (i.e., direct links from
question emails for changing profiles). Still, the collective cost
cannot be neglected. In most situations, the framework has to
work with proximate profiles automatically generated from
historical data, and this would cause inaccuracy in identifying and
selecting experts. Consequentially, some able and willing experts
might be left out of the selection, and the information-seeking
programmer might not be able to obtain help that he or she would
receive if the profiles were accurate and complete. One possible
solution is to apply the idea of escalation of support [2]. When no
answers are provided from the selected group for a predefined
period of time, the system automatically expands the recipients of
the question to all experts and finally to the whole group.

One may inquire why we do not ask all the experts or all the
members through mailing lists in the first place, or provide the list
of experts and simply let the programmer choose a member to ask
through direct emails. Mailing lists and direct emails certainly
have their advantages. In mailing lists or bulletin board systems,
repliers have complete control over when to answer the problem
and the freedom of no action because questions are not directly
addressed to them. The information seeker, however, has no way
to control the quality of the answers and push for an answer.
Furthermore, all members, no matter whether they have an
interest in the question or not, are interrupted to different degrees.
Although the cost for each member caused by one question is
rather small, when we multiply that cost by the number of
members and the number of questions, the total cost becomes
quite large, and its impact on group productivity is big. In contrast,
in direct mails, the receiver loses control of collaboration and
bears the social burden and interruption cost of reaction or no
action [31].

The STeP_IN framework attempts to find an alternative way that
is geared toward the specific needs of the type of ad hoc and in
situ information gathering from peer programmers. It is certainly
not meant to replace direct emails and mailing lists for other
communication needs.

7. CONCLUDING REMARKS
The STeP_IN framework sees peer programmers as important
resources for information because much of the information of a
software project remains in the heads of programmers. It thus
conceptualizes a software project as a socio-technical information
space consisting of code, documents, and programmers that are
interrelated. The framework provides incremental support of
information acquisition from immediately relevant information, to
contextual information, and to peers as needed.

Programming is social practice. Most existing programming
environments, however, are designed to support only the technical
aspects of programming for a single programmer. Programmers
mostly have to rely on generic and stand-alone communication
tools to meet their needs for information sharing that arise from
programming tasks. The STeP_IN framework is an initial attempt
to systematically treat both technical issues and social issues in
programming support. We envision the framework to serve as a
starting point for further investigations in this direction, and as a
generic framework that can be enhanced and improved by other
researchers and ourselves through instantiating it into different
systems.

8. REFERENCES
This research was partially supported by MEXT Open
Competition for the Development of Innovation Technology, No.
15103 and MEXT Grant-in-Aid for Exploratory Research,
17650038, 2005. We would like to thank Kouichi Kishida,
Yoshiyuki Nishinaka, and , Mitsuhiro Asada for their valuable
contributions for the development of the work presented in the
paper.

9. REFERENCES
[1] Ackerman, M.S. and T.W. Malone, Answer Garden: A Tool

for Growing Organizational Memory, in Proceedings of the
ACM Conference on Office Information Systems. 1990:
Cambridge MA. 31-39.

10

[2] Ackerman, M.S. and D.W. McDonald, Answer Garden 2:
Merging Organizational Memory with Collaborative Help, in
Proceedings of CSCW'96. 1996. 97-105.

[3] Antoniol, G., et al., Recovering Traceability Links between
Code and Documentation. IEEE Transactions on Software
Engineering, 2002. 28(10): 970-983.

[4] Berlin, L.M., Beyond Program Understanding: A Look at
Programming Expertise in Industry, in Empirical Studies of
Programmers: Fifth Workshop, 1993, Ablex Publishing
Corporation: Palo Alto, CA. 6-25.

[5] Card, S., G. Robertson, and J. Mackinlay, The Information
Visualizer: An Information Workspace, in Proceedings of
CHI'91. 1991. 181-188.

[6] Cosley, D., et al., Using Intelligent Task Routing and
Contribution Review to help Communities Build Artifacts of
Lasting Value, in Proceedings of CHI'06. 2006. 1037-1046.

[7] Cross, R. and S.P. Borgatti, The Ties That Share: Relational
Characteristics that Facilitate Information Seeking, in Social
Capital and Information Technology, M. Huysman and V.
Wulf, Eds. 2004, The MIT Press: Cambridge, MA. 137-161.

[8] Cubranic, D. and G.C. Murphy, Hipikat: Recommending
Pertinent Software Development Artifacts, in Proceedings of
ICSE03. 2003. 408-418.

[9] de Souza, C., J. Froehlich, and P. Dourish. Seeking the
Source: Software Source Code as a Social and Technical
Artifact, in Proceedings of GROUP05. 2005. 197-206

[10] de Souza, C., et al., How a Good Software Practice Thwarts
Collaboration: The Multiple Roles of APIs in Software
Development, in Proceedings of FSE04. 2004. 221-220.

[11] DeMarco, T. and T. Lister, Peopleware: Productive Projects
and Teams. 2nd ed. 1999, New York: Dorset Housing
Publishing.

[12] Fischer, G. and K. Nakakoji, Making Design Objects
Relevant to the Task at Hand, in Proceedings of Ninth
National Conference on Artificial Intelligence. 1991. 67-73.

[13] Fischer, G., E. Scharff, and Y. Ye, Fostering Social
Creativity by Increasing Social Capital, in Social Capital, M.
Huysman and V. Wulf, Eds. 2004, MIT Press: Cambridge,
MA. 355-399.

[14] Froehlich, J. and P. Dourish, Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams, in Proceedings of ICSE04. 2004. 387-
396.

[15] Fukuyama, F. Social Capital and Civil Society, in IMF
Conference on Second Generation Reforms. 1999.
Washington, DC.

[16] Herbsleb, J. and A. Mockus, An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering,
2003. 29(3): 1-14.

[17] Illich, I., Deschooling Society. 1971, New York: Harper and
Row.

[18] Kraut, R.E., et al., Social Impact of the Internet: What Does
it Mean? CACM, 1998. 41(12): 21-22.

[19] LaToza, T.D., G. Venolia, and R. DeLine. Maintaining
Mental Models: A Study of Developer Work Habits, in
Proceedings of ICSE06. 2006. 492-501

[20] McDonald, D.W. and M.S. Ackerman, Just Talk to Me: A
Field Study of Expertise Location, in Proceedings of
CSCW'98. 1998. 315-324.

[21] McDonald, D.W. and M.S. Ackerman, Expertise
Recommender: A Flexible Recommendation System
Architecture, in Proceedings of CSCW'00. 2000. 101-120.

[22] Medynskiy, Y., N. Ducheneaut, and A. Farahat, Using
Hybrid Networks for the Analysis of Online Software
Development Communities, in Proceedings of CHI06. 2006.
513-516.

[23] Mockus, A. and J. Herbsleb, Expertise Browser: A
Quantitative Approach to Identifying Expertise, in
Proceedings of ICSE02. 2002. 503-512.

[24] Nahapiet, J. and S. Ghoshal, Social Capital, Intellectual
Capital, and the Organizational Advantage. Academy of
Management Review, 1998. 23: 242-266.

[25] Nardi, B.A., S. Whittaker, and H. Schwarz, It's Not What
You Know, It's Who You Know: Work in the Information
Age. First-Monday: Peer-reviewed Journal on the Internet,
2000. 5(5).

[26] Pentland, A., Socially Aware Computation and
Communication. Computer, 2005. 38(3): 33-40.

[27] Perlow, L.A., The Time Famine: Toward a Sociology of
Work Time. Administrative Science Quarterly, 1999. 44(1):
57-81.

[28] Robillard, P.N., The Role of Knowledge in Software
Development. CACM, 1999. 42(1): 87-92.

[29] Szoestek, A.M. and P. Markopoulos, Factors Defining Face-
to-Face Interruptions in the Office Environment, in
Proceedings of CHI06. 2006. 1379-1384.

[30] Terveen, L.G., P.G. Selfridge, and M.D. Long, Living
Design Memory: Framework, Implementation, Lessons
Learned. Human-Computer Interaction, 1995. 10(1): p. 1-37.

[31] Tyler, J.R. and J.C. Tang, When Can I Expect an Email
Response? A Study of Rhythms in Email Usage, in
Proceedings of the Eighth European Conference on
Computer Supported Cooperative Work. 2003. 239-258.

[32] Westrup, C., On Retrieving Skilled Practices: The
Contribution of Ethnography to Software Development, in
Social Thinking: Software Practice, Y. Dittrich, C. Floyd,
and R. Klischewski, Eds. 2002, MIT Press: Cambridge, MA.
95-110.

[33] Ye, Y. Information-Enriched Workspaces, in Proceedings of
IFIP 2001 International Conference on Human-Computer
Interaction. 2001. Tokyo, Japan: IOS Press. 206-213

[34] Ye, Y. and G. Fischer. Information Delivery in Support of
Learning Reusable Software Components on Demand, in
Proceedings of 2002 International Conference on Intelligent
User Interfaces. 2002. 159-166.

[35] Ye, Y. and G. Fischer, Supporting Reuse by Delivering
Task-Relevant and Personalized Information, in Proceedings
of ICSE02. 2002. 513-523.

[36] Ye, Y., et al., Searching the Library and Asking the Peers:
Learning to Use Java APIs on Demand, in Proceedings of
2007 International Conference on Principles and Practices
of Programming in Java. 2007. (forthcoming)

[37] Zimmermann, T., et al., Mining Version Histories to Guide
Software Changes, in Proceedings of ICSE04. 2004. 563-572.

