
Appeared in the Proceedings of International Conference on Software Engineering (ICSE2001), Toronto, CA., IEEE
Computer Society, Los Alamos, CA., pp.524-533, May, 2001.

A Case Study of the Evolution of Jun: an Object-Oriented
Open-Source 3D Multimedia Library

Atsushi Aoki1, Kaoru Hayashi2, Kouichi Kishida1, Kumiyo Nakakoji1,3,

Yoshiyuki Nishinaka1, Brent Reeves4, Akio Takashima3, Yasuhiro Yamamoto3
1SRA Key Technology Laboratory Inc. 3Graduate School of Info. Sci 4TwinBear Research
2Open Source Business Dept, SRA Inc. Nara Institute of Sci. & Tech. 6138 Gale Dr.
 3-12 Yotsuya, Shinjuku 8916-5 Takayama, Ikoma Boulder, CO. 80303
 Tokyo, 160-0004, Japan Nara, 630-0101, Japan USA
 +81-3-3357-9361 +81-743-72-5381 +1-303-499-2666

aoki@sra.co.jp, rin@sra.co.jp, k2@sra.co.jp, kumiyo@is.aist-nara.ac.jp,
nisinaka@sra.co.jp, brent@twinbear.com, akio-ta@is.aist-nara.ac.jp, yasuhi-y@is.aist-nara.ac.jp

Abstract

Jun is a large open-source graphics and multimedia
library. It is object-oriented and supports 3D geometry,
topography and multimedia. This paper reviews the
development of the Jun library from five perspectives:
open-source, software evolution processes, development
styles, technological support, and development data. We
conclude the paper with lessons learned from the
perspective of a for-profit company providing open-source
object-oriented software to the community.

1. Introduction

Jun is a graphics library that supports 3D geometry,
topology, and multimedia. Current commercially
available 3D graphic libraries have almost exclusively
focused on geometry in order to increase rendering
performance, and do not handle topology well. A few 3D
graphic libraries that can handle both geometry and
topology do exist but are very expensive and thus limited
to professional usage. The goal of Jun is to allow regular
programmers to create, modify, and combine 3D objects
without having to learn the complexities of mathematics
and rendering. In addition, Jun supports multimedia data
such as movies and sound. A user can write a program that
plays multiple movies concurrently and places movie
windows in a 3D space. Figure 1 (a)-(c) shows example
programs to illustrate how simple it is to (a) create a 3D
object, (b) take the image from a scene in the middle of a
movie and (c) use it to texture the surface of the object.

Jun has several unique characteristics in terms of how
the software has been developed in comparison with

conventional software development. First, Jun is open
source software developed within a for-profit company.
The software is free and downloadable from our Web site.
Second, Jun is developed on Smalltalk and adheres to a
pure object-oriented development style. Third, Jun has
been evolved over the last five years producing more than
360 versions and currently consists of more than six
hundred classes. Fourth, data is available regarding the
entire development process of Jun. We have collected data
on each version of Jun as well as journals and mail
messages exchanged via the Jun mailing list.

By using this data as a resource and by conducting
intensive interviews with the Jun development team
members, this paper reviews the evolution of the Jun
library from five perspectives: (1) open-source, (2)
software evolution processes, (3) development styles, (4)
technological support, and (5) development data. Having
source code and development data openly available among
the community, we have been able to find what works and
not works in object-oriented open-source evolutionary
software development.

The next section gives a brief description of the Jun
library. The following five sections discuss the above five
perspectives respectively. We conclude the paper with
lessons learned from our experience developing object-
oriented open-source free library at a for-profit company.

2. A brief overview of the Jun library

Jun is a library for VisualWorks Smalltalk versions 2.5,
3.0 and 5i. It runs on VisualWorks Smalltalk platforms:
Windows, Macintosh, and Linux.

Jun adheres to a pure object-oriented MVC (Model-
View-Controller) architecture [10]. We have applied an

object-oriented methodology in all phases of analysis,
design, and programming. Because it is written in
Smalltalk, Jun users benefit from features of this pure
object-oriented language environment, including
incremental garbage collection, multi-platform
compatibility, virtual machine acceleration techniques
including dynamic and just-in-time compilation,
information hiding using objects, and abstraction through
inheritance [7].

Basic functions provided by Jun include:
• geometric elements, such as point, line, plane,

NURBS curved line, curved surface;
• topological elements, such as vertex, edge, loop,

surface, shell, solid, and Euler operations,
geometric operations, and set operations;

• rapid rendering using OpenGL;
• conversion between VRML1.0/2.0;
• operations on movies in AVI and MVI formats,

sound in AIFF format, and images in JPEG and
GIF formats; and

• importing Autocadtm DXF files.
Jun goes beyond a typical utility library by also providing
more application-like features including:

• Viewfinder (see Figure 1 (d)), an interface for 3D
object display and selection, coordinate
transformation, point of view transformation,
calculation of visible volume, illumination,
shading, wire frame, solid modeling, and add
projection;

• 3D graphs using nodes and arcs, 3D animation,
3D plotter, and 3D charts;

• texture mapping of an image onto a 3D surface;
• the creation of a 3D shape through rotation of a

2D object;
• parameterized shapes, which are 3D objects

whose shape can be altered using parameters;
• high-level image processing such as outline

tracing and line thinning; and
• movie and sound players and editors based on

Apple QuickTimetm.
Each major class provides several examples similar to

the ones shown in Figure 1. Our experience has shown
that these examples play a crucial role in helping people
learn about the library and put it to use.

As Open Source software, Jun is free, and has hundreds
of users all over the world. Our ftp
(ftp://ftp.sra.co.jp/pub/lang/smalltalk/jun/) and Web

Figure 1. The use of Jun: (a) creating a solid cube shape (b) random access to movie frames
(c) texture mapping from a movie scene (d) collage of Jun features

Figure 2. Jun Web page accesses

(http://www.sra.co.jp/people/aoki/Jun/Main_e.htm) sites
received more than 200,000 hits in March 2000 (see
Figure 2). Jun has now gone through more than 350
version-updates and the latest version consists of more
than 650 classes. As described later, Jun has been ported
to Java and C++ by both internal and external
collaborators.

Jun began as a refactoring [4] of a 2-D graphic library
that one of the authors started in 1991. In June 1995, when
OpenGL was made available as DLL by the Windows95
operating system, we started constructing 3-D graphic
libraries on top of the 2-D graphic library. In September
1995, the first version of Jun, Jun004, was made public as
free software.

Since then, several small- and large-scale projects have
used Jun as a substrate. Each new project caused additions
and changes within Jun as further discussed in Section 4.

3. Open source software development

Jun is an open-source software library freely available
at our ftp site. It is published under the terms of the Free
Software Foundation’s (FSF) GNU General Public
License [5], which protects the intellectual property rights
of our company and the developers of the software.

Open source software adheres to a development process
that promotes rapid creation and deployment of
incremental features and bug fixes [13]. Open source
proponents claim that having all source code open to
inspection by the public results in higher quality code and
quicker bug fixes.

However, Jun’s evolution differs from other well-
known open-source systems such as Linux [18], PERL
[19], or Apache [3]. Instead of a wide community of
programmers each contributing a small part, almost all of
Jun was developed by a small group of three to five
programmers at a time. Though the community did not
provide much source code, it did provide feedback, feature
requests and bug notices.

This section discusses characteristics of Jun
development as open-source software development. We
explain two different types of observed effects of Jun’s
being open-source, describe how our company views the
development of open-source freeware within a business
model, and show how open-source developers produce
high-quality software.

3.1. Two types of effects of open-source products

We noticed two major effects of Jun being open-source
(Figure 3). The first is well known in the open source
community as described in Raymond’s Cathedral and
Bazaar paper [15]. We call this aspect incremental growth.
Here, the community of Jun users finds and fixes bugs and
contributes enhancements. The community of users exists
inside and outside of the company.

The second effect can be described as reference model
development. Developers use the source code as a model
for porting Jun to other languages, for example C++. In
this case, the Jun source code itself is not directly affected,
but its underlying object-model may be. In other words,
users do not simply re-use source code; they use our
object model for the domains of geometry, topology, and
multimedia data handling.

There is no single correct answer to design object
models in any given domain. We have made certain
design decisions to handle topology, geometry and
multimedia data. If the object-model architecture reflected
in our design decisions becomes widely used in the
community, we can play a leadership role by continuing to
improve and refactor the architecture.

3.2. Open source development at a commercial
company

When people learn that Jun is free, the question people
ask is: “How can your business survive giving away such
complex software?” There are several ways a company

Smalltalk

C++

Java

(1) incremental growth (2) reference model development

time time

Smalltalk Smalltalk

Figure 3. Two types of open-source effects

can profit from open-source products. One can produce
learning materials such as textbooks and training,
distribute packaged versions of the software, build
development tools for the products, and make proprietary
extensions [14].

Our business case for open source software is twofold:
long-term leadership and consulting services.

First, as discussed above, Jun is beginning to serve as a
reference model in 3D graphics and multimedia data
handling. Although this does not directly generate income,
it serves to advertise our competence in the long run.

Second, many customers need to modify the Jun library
for their specific needs. In theory, open-source allows
anybody to change the software as they see fit. But in
practice, regular computer users and end-users cannot
actually do too much with source code [12]. They need
expert programmers to adapt the software to their needs.

It is possible for other companies to develop products
with Jun, or to change or enhance Jun. However, the
library itself has now become so large and complex that it
is not easy for outsiders to completely understand it.
Consequently, people ask us to help them use or modify
Jun. Though the source code is free, the learning curve is
steep and clients can save much time and resources by
using us to help them customize Jun.

3.3. Open source as quality assurance

One of the major contributors to increased software
reliability and quality has been walkthroughs [2]. One
reason that walkthroughs work is that simply knowing
others will be reviewing their code in detail causes
programmers to work hard at writing clear and high
quality software. Open source software takes code
inspection and walkthroughs to the next level, because
now programmers know that everybody will be able to see
and review their work.

It is well known in the software engineering
community that much software is written as a quick hack
to meet a deadline. Such code is difficult to understand
and maintain. In contrast, the Jun project has never
experienced this kind of problem. Because the

development team members are all aware that
programmers all over the world will see source code, they
take the time necessary to write clear and high quality
code and add examples to show how it should be run.

Making the source code open has motivated the whole
development team to observe disciplines such as: keeping
design simple, continuously testing each portion of a
program and integrating as often as possible, agreeing to
coding standards, including documentation, and
continuous improvement of the source code through
refactoring [4]. Interestingly, these disciplines correspond
with most of guidelines suggested by eXtreme
Programming [1]. As we discuss more in Section 5, the
development style of Jun in fact has been found very
similar to the one advocated by the eXtreme Programming
approach.

4. A model of evolutionary process

Jun has evolved through 360 versions released over the
last five years. Usually open-source software evolves
continuously from feedback from the community of users.

In our experience of Jun, however, the evolution is not
simply driven by feedback from the community. As we
briefly mentioned in Section 2, several large-scale projects
using Jun identified new needs for Jun, which also guided
the evolution of Jun.

This process is similar to the biological evolutionary
process [11]. According to Maturana and Varela, changes
are determined by the structure of an organism and a
perturbation. A perturbation itself does not determine how
the organism evolves, but it triggers the organism to
change its structure. The evolved organism with its new
structure affects the outer environment and produces
another perturbation. This iterative process of the
interaction between the organism’s structure and the
environment through a perturbation is a driving force of
evolution.

In the case of Jun, customers might need something
that Jun does not fully support. New requirements emerge
from the project and they serve as a perturbation to evolve
Jun. Refactoring and other evolutionary changes also take

ontogenic
evolution

3D-Geometry
modeler

+ 3D-Topology
modeler

+ Multimedia handler
phylogenic
evolution

Stage1

Stage2

Stage3

Version004 Version016 Version340

9/95: Jun was
released

8/96: Project
HQL started

7/99: Project
NSN started

Accommodating to needs
caused by large projects

Refactoring by the Jun
developers

Community contribution
(requests and bug reports)

Legend:

Figure 4. Evolution of Jun

place. Each new version of Jun then attracts new
customers with other needs and interests.

There are two types of evolution in biology: phylogeny
and ontogeny [11]. The former refers to the evolution as
species while the latter refers to the evolution of individual
living beings. We have also found two types of evolutions
in the history of Jun corresponding to these two types.

Incorporating bug-fixes and minor change requests
causes Jun’s version updated; however, this usually does
not affect the underlying class structure and change the
fundamental nature of Jun. This is similar to an ontogenic
process where an individual living being grows.

In contrast, there have been several major version
updates in the history of Jun. They were caused by large-
scale projects using Jun. The Jun team members identified
new needs for Jun, which required major modifications in
its underlying object models. Two versions, before and
after such a major change, are different in nature
belonging to two different stages; Jun has experienced
phylogenic evolution.

Figure 4 illustrates how both ontogenic and phylogenic
evolution took place in the history of Jun. Contributions
by Jun user communities such as bug reports and change
requests as well as refactoring by Jun team members
continuously evolve Jun within a single stage. This has
been reflected in version updates. In the mean time, large-
scale projects caused the phylogenic evolution of Jun
producing stage updates.

Figure 4 shows how version updates (ontogenic
evolution) and stage updates (phylogenic evolution) took

place in the period between September 1995 and the end
of 1999. When the first version of Jun was released in
September 1995, it got some attention from the Smalltalk
community. Several bugs were reported to us as well as
refinement requests. This Stage1 of Jun was simply a “3D
geometry modeler.”

Then, the first large project, HQL started in August
1996. The project was about the development of human
sensory indices, particularly measuring environmental
adaptability of human bodies, and product adaptability.
The goal was to produce a 3D human body model that a
user can directly manipulate and simulate its movement
within a 3D environment. This motivated us to have
strong integration of Jun with Open-GL, to be able to
handle 3D topology, and to achieve fast rendering. This
has evolved Jun into Stage2. This stage of Jun was a “3D
geometry and topology modeler.”

Another large-scale project that served as a perturbation
for Jun was a project that supports empirical software
engineering, called NSN. The NSN project started in July
1999. In order to build a user interface for empirical
studies, Jun needed to handle multimedia data such as
video and audio data within the 3D space. This motivated
us to add multimedia functionality to Jun. Stage3 of Jun
was then called a “3D geometry and topology modeler
with multimedia handler.”

Other large-scale projects that phylogenically evolved
Jun include educational contents authoring, and computer
integrated manufacturing for large ships and tankers.

(a) JunVersionBrowser

(b) JunVersionDifferenceBrowser

(c) JunVersionHistoryBrowser

Versions

Class names

definition

Method names

2 versions
to compare Classes

- added
- modified
- deleted

Methods
- added

- modified
- deleted

Definitions to compare

Versions that
added/modified/deleted

the specified class

Precious definition Current definition

Figure 5. Tools used to support the evolution of Jun

5. Jun development style

Jun was written by a small group of programmers with
a leader who served as a manager for the entire Jun project.
We observed that Jun’s evolution is highly dependent on
this chief programmer’s management style. We found that
strong leadership and selection are the two keys that have
made Jun a successful object-oriented open-source library.

The project leader receives all email messages
concerning Jun. Though the library is large and the
amount of mail communication has increased, the leader
still sees every message. His team members develop Jun
classes and methods, and the leader integrates the newly
added portion to an officially released Jun version upgrade.
Users from the community also send in their own
contributions, but the leader frequently chooses to revise
the contribution to maintain the integrity and coherence of
the library.

eXtreme Programming (XP) has recently gained
attention in the software engineering community [1]. The

XP style is characterized by: early, concrete, and
continuing feedback from short cycles, incremental
planning approach, flexible needs and functionality,
automated tests, evolutionary design process, and
communication. As we discussed in Section 3, the Jun
development style is very similar to that of XP. XP values
communication, simplicity, feedback and courage.

Communication. Jun development team members
work closely with each other either physically or logically
linked by frequent mail exchanges. Jun mailing lists have
seen extensive use to keep project members aware of the
current state of Jun. They strongly encourage good
documentation to increase communicability of source
code. The naming convention embraced by the Smalltalk
culture also helps the communicability of the source code.
For instance, they use names such as JunMoviePlayer
and openAndPlayAndCloseWithoutTracker as a
class name and an instance method name. Good names
have been shown to increase subsequent programmers’
ability to understand and reuse programs.

Simplicity. Simplicity has also been a key driving the
Jun project. Jun is a library, and not an application itself.
Library components need to be simple and general
because they cannot be widely used otherwise. As we
discussed in the previous section, although Jun is a library,
it was shaped with applications as a driving force. When
constructing new classes and methods for Jun, Jun
development team members carefully design them so that
they would maximize generality and extensibility.

Feedback. Jun has mainly grown in small, incremental
steps. 360 versions in five years development time means
six releases per month on average. This means more than
once per week.

Courage. Finally, courage has also been necessary.
Jun has been refactored many times [4]. Refactoring
always involves a certain amount of risk. The usual rule is,
“If it’s not broken, don’t fix it.” Refactoring goes directly
against this. As we show in Section 7, sometimes a new
version will remove a large number of classes and
methods for the sake of refinement. There is always the
risk that something important will get deleted and will be
difficult to put back in. This attitude is motivated and
supported both by the fact that code is open for public, as
well as by the project culture, that they are working for
“Jun.”

6. Technological support for evolution

Releasing 360 versions of a large library requires
technological support, which in this case was written into
the library itself.
JunVersionDatabase is a class that stores

versions of Jun. A JunVersionDatabase consists of a
sequence of JunVersionChunks, each of which
contains one version. A JunVersionDatabase
produces a “VDB (Version DataBase)” file that contains
information about multiple versions.

Jun also provides interfaces that help programmers
browse the content of the VDB file. Figure 5 shows three
types of version-database browsers. Figure 5(a) shows
JunVersionBrowser, which is an extension of system
browser that is originally provided by the VisualWorks
Smalltalk environment. It allows a user to select a version
stored in a version database (the top-left window), then the
system shows class and method definitions (in the bottom
window) for that version. The top-right window shows a
list of method names and selecting one of them will
display the definition of the method.
JunVersionDifferenceBrowser (Figure 5 (b))

allows a user to compare two versions. The system shows
two definitions of a selected class name or a method name
from two specified versions one in each window at the
bottom. Color is used to identify changes, deletions, and
additions.

Finally, JunVersionHistoryBrowser (Figure 5
(c)) allows a user to examine how specific classes have
evolved over a series of version updates. When a user
opens JunVersionHistoryBrowser with a set of
class names, the browser displays versions in bold font in
the top-left corner showing that those versions added,
modified, or deleted one of the specified class or its
methods definitions. The bottom-left window shows the
previous definition, and the bottom-right window shows
the current definition.

Along with frequent update of the software using these
version management tools, the Web pages have been kept
up-to-date. As the WWW and ftp logs attest, access via
web is now of critical importance and as the library has
grown in size and complexity, online documentation
available as html files has played a larger and larger role
in helping new users download and install the software.

7. Measurement data analysis of Jun

Figure 6 shows how Jun has evolved during the last
four years. The figure illustrates how the total numbers of
classes, class methods and instance methods have evolved
over the 360 versions.

Godfrey and Tu has reported that they have found
Linux, a widely known large-scale open-source software,
has been growing at a super-linear rate [6] and that their
finding does not conform to Lehman’s law, which states
that large-scale software grows more slowly as it gets
bigger and more complex [9].

We have found that Jun’s evolution does not follow
Lehman’s law either. If we use the number of classes as an
index to one aspect of the Jun evolution, we can see from
Figure 6 cycles of steep increase and flattened out modest
increase. The steep increase indicates a period of time
when major modifications to Jun were being made. This
corresponds to the phylogenic evolution of stage updates
as we discussed in Section 4. The modest increase
indicates a period of time when minor modifications were
being made. This corresponds to the ontogenic evolution.

Let us now take several examples of Jun development
activities to describe how such phylogenic evolutions took
place. First, there is a little steep around August of 1997
(see Figure 6). It was the time when we added support for
VRML to Jun.

April and May of 1999 shows another steep increase,
when we added major changes to Jun to make the library
compatible with Linux and Mac operating systems on
VisualWorks3.0. Before then, Jun was compatible with
multiple platforms on VisualWorks 2.5, but only with
Windows on VisualWorks 3.0. The changes did introduce
not only many new classes but also large changes to
instance methods; 2814 instance methods were added and
1199 instance methods were deleted to accommodate this

0

100

200

300

400

500

600

700

800

10
/2

9/
96

12
/2

7/
96

1/
23

/9
7

3/
4/

97

5/
12

/9
7

5/
28

/9
7

8/
13

/9
7

9/
24

/9
7

10
/2

4/
97

11
/9

/9
7

12
/1

5/
97

1/
30

/9
8

5/
6/

98

7/
27

/9
8

9/
29

/9
8

1/
20

/9
9

4/
2/

99

9/
9/

99

12
/2

7/
99

2/
17

/0
0

6/
26

/0
0

0

2000

4000

6000

8000

10000

12000

14000

16000

of classes

of class methods

of instance methods

of classes # of methods

Figure 6. The numbers of classes, class methods and instance methods of Jun

change. As we discussed in Section 5, this is a good
example of how the Jun team members demonstrated
courage in refactoring the software.

In December 1999, we added two application-like
features. One was called Teddy, a free-hand drawing
interface for 3D objects based on the work by Igarashi [8].
The second was a terrain-modeling program that generates
a 3D terrain model based on a topographic map data.
Both made heavy use of triangulation, and many classes
were added. Later, the Jun team refactored these classes as
indicated by a slight decrease in the number of classes
around February, 2000.

In March 2000, another major evolution happened. We
ported Jun to VisualWorks5.0i and refactored support for
Windows, Mac and Linux. Much new code was written
while the number of classes actually not increased. In fact,
if we examine how classes were added, deleted, and
changed in each version, we have found a large number of
classes were deleted and then added.

We have used this kind of development data as a means
for reflection among the Jun development team members.
Although graphs such as Figure 6 were useful, they were
not helpful enough to examine some aspects of Jun
evolution, such as how the growth of the number of
classes and that of instance methods are correlated to each
other. We needed more finely crafted, customized
visualization tools that would allow us to interactively
explore specific aspects of Jun evolution.

Based on this recognition, we have developed an
information animation tool by using Jun to animate the
evolution of Jun itself (Figure 7) [17]. Although this

project has just got started, we have already found
characteristics of class and method evolution by using the
tool; while the number of classes increases prior to the
increase of instance methods in carefully designed projects,
the numbers of classes and instance methods
simultaneously increase in poorly designed projects. This
type of finding will be useful in identifying the quality of
an object-oriented project by measuring artifacts produced
by the project.

8. Lessons learned

We currently have about 100,000 monthly hits on our
web site, and a growing list of customers requesting help
with customizing the library to fit their needs. In terms of
acceptance by users and worldwide distribution, Jun has
been a great success story in the open-source field. In
terms of how constantly the system has been evolved, Jun
has been a success case of evolutionary object-oriented
software development.

As we reflect on this story, the success of Jun seems to
be due to the following factors:

Community leadership. As discussed in Section 2,
open-source development does not necessarily only mean
the cooperative development empowered by many eyes
[15]. Object models that the source code is based on can
be copied and ported to other languages if source code is
open. The topology, geometry and multimedia-data
handling architecture in Jun has been ported to Java by our
internal collaborators and to C++ by people outside of our
company. Open source software does not only mean that

Figure 7. Information animation on Jun
development data using Jun

the source code is open; it also means that the underlying
object models are open. When the models become widely
used in the community, we are able to play a leadership
role in the community by continuing to improve and
refactor the models.

High quality. Our interviews with Jun team members
showed that much more time and effort is required of
them for the Jun development than for other conventional
projects because they know their code is going to be open
to inspection by many other people. This pressure has
driven the entire Jun development team to keep producing
high quality programs. This coincides with our findings
during interviews of university students; when asked why
they would not make their programs open-source, they
answered that their source code is “a shame” and they did
not want to be publicly critiqued. Our experience has
demonstrated that open source can now mean better
quality than “closed source” software. We believe this
aspect of open source will become more and more
important in the software industry.

Evolutionary triggers. As discussed in Section 4, we
have seen that Jun has gone thorough version updates
(ontogenic evolution) as well as stage updates (phylogenic
evolution). Especially for phylogenic evolution to take
place, we need periodic perturbations caused by other
projects. In one sense, which projects to take determines
which direction the library goes, and selecting the “right”
project in the course of the development of an open-source
library is critical in keeping the evolution on the “right”
track. Not all projects are suitable for inclusion – some
would detract from the overall architecture and goals. The
chief programmer plays a critical role in judging the
suitability of new projects.

The role of a project leader. One fear in open-source
development is that too many cooks ruin the soup. Trust
and dependability are important aspects in the growth of
an open-source project. Potential contributors must believe
in the long-term direction and quality of leadership. The
project leader of the Jun development team has been
responsible for deciding which submissions to incorporate

and which projects to accept. People trust his decisions.
The promise of open-source software is not just access to
the source code, but trust in the human leadership.

Tool support. As we discussed in Section 6, we made
use of the version database tools, most notably when
porting Jun from Smalltalk to Java, begun in 1998. The
tools helped make one’s contribution tangible. The project
is large and an individual’s contribution can get lost.
These tools affirmed the role that each individual played
by making the changes explicit.

Journals and mailing lists. Not only program versions,
but also recorded mail communications and individual
journals have helped Jun team members remember and
understand why certain design decisions had been made.
Because such documentation activities are not directly
related to the actual product development, one tends to
forget, avoid, or postpone tasks related to documentation.
Journals were notes taken by Jun developers on individual
basis and made public through internal Web pages as
necessary. Discipline was necessary to maintain accurate
logs of changes. The project leader has been playing an
important role also in this respect.

Visual feedback on software evolution. The Jun team
members have been accumulating data on the Jun
development as presented in Section 7. Visual
representations of such development data have been found
very useful to help the team members reflect in what and
how they have been doing, and to encourage them for
further development. This coincides with the finding that
the visual feedback of development data was useful to
motivate the software engineering process group (SEPG)
to push their process improvement activities forward [16].
A variety of interactive visualization techniques, including
information animations [20], must be explored to more
effectively give such feedback.

Nonlinear steps in class- and method-growths. In
many important ways, Jun is typical of large-scale object-
oriented development. As discussed in Section 7, Jun has
evolved neither as a simple linear nor non-linear increase
in objects. The number of classes increased or decreased
depending on the type of the evolution. Doubling the
number of classes may just be the result of copying a
package to test a new class structure, and does not
necessarily mean either evolution or improvement.
Decreasing the number of classes, on the other hand, may
be a result of refinement, or refactoring, rather than a
decrease of functionality. Current measuring schemes for
object-oriented programming, such as counting the
number of objects, therefore, are not necessarily a very
useful way of capturing the evolution of an object-oriented
program. Analyses of data on Jun have demonstrated this
point. We need to work on metrics and analyses, which
can aid developers of large-scale object-oriented systems.

The role of examples. Not all interested users are
programmers. Only a small fraction of users have the
technical skills to download the library, install it in their
environment, and then use it for their tasks. Typical users,
even experienced programmers, ask as for help to make
full use of the library. Semi-expert programmers
sometimes need a seed created by us, to get them started
in the right direction. One may argue that having many
good examples could decrease the likelihood of customers
asking us to do consulting work for pay. To the contrary,
however, we have found that having many good examples
makes the library accessible to more people and thus in
the long run brings us more business.

9. Conclusion

This paper reported our experience with Jun, an open-
source 3D graphics and multimedia library for Smalltalk.
We examined our experience from several aspects and
discussed lessons learned. We have found that much of
the success of this project can be ascribed to its being
open-source, object-oriented software. None of us have
foreseen these success factors at the beginning of this
project. The disciplines, XP-like development styles, self-
producing development support tools, and evolutionary
development patterns have all emerged in the course of
this project.

Now that we have articulated what have been key
factors for the successful Jun development, we hope to
disseminate the findings and keep applying them to other
software development projects.

10. Acknowledgements

We would like to thank the entire crew of the Jun
development team, whose contributions made the current
Jun possible. They are: Tomohiro Oda, Takanori Hoshi,
Ryousuke Yamada, Katsuhiro Watanabe, Satoshi
Nishihara, Ankur J. Chavda, Ryouishi Matsuda, and
Minoru Matsuo. We would also like to thank Yunwen Ye
and Keiko Kondo for their valuable comments and
feedback on the paper.

11. References

[1] Beck, K. eXtreme Programming eXplained: Embrace
Change, Addison-Wesley, Boston, MA. 2000.

[2] Fairley, R.E. Software Engineering Concepts. McGraw-Hill
Inc., New York:, NY. 1985.

[3] Fielding, R.T. Shared Leadership in the Apache Project,
Communications of the ACM, Vol.42, No.4, ACM, New York,
NY, pp. 42-43, April, 1999.

[4] Fowler, M. et al. Refactoring: Improving the Design of
Existing Code, Addison-Wesley, Boston, MA., 1999.

[5] GNU General Public License, Free Software Foundation,
http://www.fsf.org/copyleft/gpl.html.

[6] Godfrey, M.W., Tu, Q., Evolution in Open Source
Software: A Case Study, Proceedings of the 2000 International
Conference on Software Maintenance, San Jose, California,
October 2000.

[7] Hopkins, T. Horan, B. Smalltalk: An Introduction to
Application Development Using Visual Works, Prentice Hall,
1995.

[8] Igarashi, T., Matsuoka, S., Tanaka, H. Teddy: A Sketching
Interface for 3D Freeform Design, SIGGRAPH 99 Conference
Proceedings, pp. 409-416, 1999.

[9] Lehman, M.M., Perry, D.E., Ramil, J.F., Implications of
Evolution Metrics on Software Maintenance, Proceedings of
International Conference on Software Maintenance (ICSM’98),
Bethesda, MD., November, 1998.

[10] Lewis, S. The Art and Science of Smalltalk, Prentice Hall,
1995.

[11] Maturana, H. R., Varela, F.J. The Tree of Knowledge: The
Biological Roots of Human Understanding, Shambhala
Publiccations,Inc., Boston, MA. 1998.

[12] Nardi, B.A. A Small Matter of Programming. The MIT
Press, Cambridge, MA. 1993.

[13] O’Reilly, T. Lessons from Open-Source Software
Development. Communications of the ACM, Vol.42, No.4,
ACM, New York, NY., pp. 33-37, April, 1999.

[14] Ousterhout, J., Free Software Needs Proft, Communications
of the ACM, Vol.42, No.4, ACM, New York, NY., pp. 44-45, .
April, 1999.

[15] Raymond, E. The Cathedral and the Bazaar,
http://www.ccil/org/~esr/writings.

[16] Sakamoto, K., Nakakoji, K., Takagi, Y., Niihara, N.,
Toward Computational Support for Software Process
Improvement Activities, Proceedings of the 20th International
Conference on Software Engineering, IEEE Computer Society,
Kyoto, Japan, pp.22-31, April, 1998.

[17] Takashima, T. Kurakawa, K., Yamamoto, Y., Nakakoji, K.,
Representing and Interacting with Complex Data with Temporal
Variations, IPSJ-SIG-HI-92-5, pp.31-38, January, 2001 (in
Japanese).

[18] Torvalds, L. The Linux Edge, Communications of the ACM,
Vol.42, No.4, ACM, New York, NY., pp. 38-39, April, 1999.

[19] Wall, L. The Origin of the Camel Lot in the Breakdwon of
Bilingual Unix, Communications of the ACM, Vol.42, No.4,
ACM, New York, NY., pp. 40-41, April, 1999.

[20] Wright, W., Information Animation Applications in the
Capital Markets, Proceedings of InfoVis’95, IEEE Symposium
on Information Visualization, New York, pp. 19-25, 1995.

